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TASK ORGANIZATION FOR EXECUTION USING
LINKED RECORDS REFERENCING CODE
MODULES

This is a continuation of application Ser. No.
07/954,988, filed Sep. 30, 1992, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to processors in com-
puter systems. Specifically, the present invention relates
to task management in a processor.

2. Background Information

Modem applications, such as multimedia applications
where text, audio, speech, video, and data communica-
tions are all processed in real-time, have special require-
ments. Standard commercially available microcomput-
ers have typically not had the requisite processing
power in order to perform all these tasks in a real-time
environment. Modern architectures which are designed
to handle the load associated with operating these types
of tasks in real-time has sometimes dictated the use of a
digital signal processor (DSP). However, even when
using a digital signal processor, tasks consuming a lot of
processing bandwidth still need to be managed in an
efficient way in order for all the requisite processing to
be done within specific intervals of time.

One approach to task management for processes
which need to be completed in a specified interval of
time is to divide time into a discrete series of units
known as “frames.” Frames are intervals of time in
which an interrupt or other timing signal is generated to
a processor at regular intervals and each of the tasks
being executed by the processor is serviced in sequence.
In such a frame-based processing system, each of the
tasks is typically linked or associated with one another
through some data structure, and the data structure is
traversed during the servicing of the interrupt at the
beginning of the frame, such that each task is serviced
within the frame. A frame length is typically chosen
based upon available cache memory in the system, and
the minimum possible rate at which specific tasks
should be serviced, among other considerations. For
instance, a MIDI application (one using the Musical
Instrument Digital Interface) requires minimum frame
duration of 2 to 4 milliseconds. Applications using the
V.32 data modem requires 2 maximum frame limit of 13
milliseconds. At any rate, frame size is typically driven
by the application, available hardware, and other fac-
tors.

One prior art technique for organizing tasks is to
place them in a simple, linear list. In this approach, each
task is executed in turn. One shortcoming of this ap-
proach is that tasks which are related to one another are
not logically grouped. In addition, this prior an ap-
proach suffers from the defect that there is no distinc-
tion between tasks which require servicing at regular
intervals and those which require servicing only occa-
sionally. Therefore, overall execution time of the pro-
cessor may be hampered (and certain applications hin-
dered, or not able to run at all) by executing both types
of tasks without regard for the tasks’ timing require-
ments. In addition, because each of the tasks are linked
sequentially, resource allocation may not be done opti-
mally according to a function’s activity which com-
prises one or more tasks. For instance, certain of the
tasks linked sequentially may be related and thus unnec-
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2

essary or inefficient resource allocation for each of the
tasks may be performed. This occurs because memory
accesses and other types of resource accessing may be
done repetitively according to where in the execution
list the related tasks appear.

Yet another shortcoming of the prior art organization
of tasks is that error conditions which are generated on
one task may or may not necessarily abort other depen-
dent tasks. As a result, the application programmer
needs to include in each of his tasks error handling
routines which will determine whether a previous task
on which it is dependent has completed normally. This
will prevent the execution of the task because it will not
function properly in the absence of the previous task
completing normally. This requires extra work for the
programmer, plus extra overhead for the processing
system. In general, client or process management of
tasks is difficult using the prior art sequential method of
task servicing and execution.

The prior art sequential task execution list also fails to
provide a means for performing certain groups of tasks
in different sequences. Certain tasks may be run unnec-
essarily even where a prior control task has ascertained
that only limited number of related tasks need to be
executed. Of course, each task will also require execu-
tion control code in order to determine whether the task
will be run or not. Again, needless overhead is con-
sumed by calling each task for execution, even if not
required, due to loading and saving the processor con-
text and retrieving the requested resources from mem-
ory or non-volatile storage. This requires that the pro-
grammer has a more in-depth knowledge of the under-
lying operating system and its organization of functions,
as well as adds additional complexity to each of the
tasks which are linked.

Yet another shortcoming of the prior art approach of
sequentially linking tasks in a task list is that the organi-
zation provides no means to manage the processing load
for a group of tasks which are required to be run in a
specific interval of real-time, where different combina-
tions of the tasks are required depending on the status of
the function Such a means is important in order to guar-
antee that each of the functions comprised by one or
more tasks is serviced during a frame. This results in
difficulty in managing real-time resources, and may
cause the failure of a real-time process due to incor-
rectly determining the required execution load.

SUMMARY AND OBJECTS OF THE
INVENTION

One of the objects of the present invention is to pro-
vide an efficient means for task organization which
groups tasks by function.

Another of the objects of the present invention is to
provide a means for organizing tasks such that error
conditions and other status information may be main-
tained easily among groups of tasks.

Another of the objects of the present invention is to
provide a means for flow control within a task such that
resources are not needlessly consumed when certain
subtasks or modules are not required to be performed.

Another of the objects of the present invention is to
provide a means for facilitating the efficient use of pro-
cessing power for all types of tasks.

Another of the objects of the present invention is to
provide a means for synchronizing the execution of
various tasks within specific intervals of time.
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These and other objects of the present invention are
provided for by a means and method of grouping tasks
for execution by a processor, such as a digital signal
processor. The method creates at least one task datum,
the task datum including an identifier of a first task, and
a reference to a next task datum. The task datum is
placed into a task list which may contain references to
any number of tasks. A reference is created to a first
module datum in the task datum, the first module datum
representing a first executable module of the first task.
The first module datum is linked with a second module
datum, if any, for a second executable module having
functions related to the first executable module. Any
number of related modules may be linked with the first
module datum. By grouping the related modules which
form a task together, error conditions, and resource
requirements for each of the tasks and modules may be
handled more efficiently. For example, in one embodi-
ment, modules may reference common storage areas
they require such as sections so that unnecessary loa-
ding/saving of data in common storage areas may be
avoided.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of exam-
ple and not limitation of the figures of the accompany-
ing in which like references indicate like elements and in
which:

FIG. 1 is a block diagram of the computer system
which may be utilized by the preferred embodiment of
the present invention.

FIG. 2 illustrates the structure of an operating system
which is used for managing tasks and clients using a
coprocessor, such as a DSP.

FIG. 3 illustrates the organization of data associated
with each module in a task.

FIG. 4 illustrates the currently preferred embodiment
of a section in a module in the present invention.

FIG. 5 illustrates an example of various resource
references associated with a module of the present in-
vention.

FIG. 6 illustrates the organization of tasks into a task
list which may be performed in a DSP.

FIG. 7a shows an organization of time into discrete
intervals known as frame’s.

FIG. 7b shows the data processing latency of a frame-
based system.

FIG. 8 shows the division of a frame into real-time
and timeshare slices.

FIG. 9 shows a more detailed representation of the
division of a frame into real-time and timeshare slices,
with the associated load and store operations required
by such tasks.

FIG. 10 is a detailed view of a real-time slice of a
frame with the associated loading and saving of context
during the execution of each real-time process.

FIG. 11 is a flow chart showing the process used for
servicing real-time and timeshare tasks.

FIG. 12 shows the organization of one example task
which has a series of modules linked and associated
with one another.

FIG. 13 shows a method used by the preferred em-
bodiment to control the execution flow of modules of a
given task.

FIGS. 14a through 14d show various examples of
using the method of task flow execution described in
FIG. 13 above.
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FIG. 15 shows a flow chart of the method used for
setting up a sequenced and precise frame related task
activations.

FIG. 16 shows a flow chart of the method of activat-
ing the sequence specified in FIG. 15.

FIG. 17 shows a flow chart of the relevant portion of
the DSP Kernel executive routine that actually carries
out the task activation as set up in FIG. 15 and 16,

FIG. 18 shows a flowchart of an alternative task
activation/deactivation process,

DETAILED DESCRIPTION

This application is related to the following co-pend-
ing patent applications filed concurrently herewith:.

A patent application entitled INTERTASK
BUFFER AND CONNECTIONS, whose inventors
are A. Philip Sohn and Eric Anderson, which has been
assigned Ser. No. 07/954,902.

A patent application entitled A METHOD AND
MEANS FOR PROVIDING MULTIPLE CLIENTS
SIMULTANEOUS ACCESS TO A SOUND DATA
STREAM, whose inventors are Eric Anderson and
Hugh Svendsen, which has been assigned Ser. No.
07/954,873.

A patent application entitled APPARATUS AND
METHOD FOR HANDLING FRAME OVER-
RUNS IN A DIGITAL SIGNAL PROCESSING
SYSTEM, whose inventors are Eric Anderson and
Hugh Svendsen, which has been assigned Ser. No.
07/954,758.

A patent application entitled APPARATUS AND
METHOD FOR ALLOCATING PROCESSING
TIME IN A FRAME-BASED COMPUTER SYS-
TEM, whose inventors are Eric Anderson and A. Philip
Sohn, which has been assigned Ser. No. 07/054,338.

A patent application entitled EXECUTION CON-
TROL FOR PROCESSOR TASKS, whose inventors
are Eric Anderson and Hugh B. Svendsen, which has
been assigned Ser. No. 07/954,770.

A method and apparatus of task management in a
processor is described. In the following description, for
the purposes of explanation, specific data structures,
pointers, resources, times, signals, and formats are set
forth in order to provide a thorough understanding of
the present invention. It will be apparent, however, to
one skilled in the art that the present invention may be
practiced without these specific details. In other in-
stances, well-known structures and devices are shown
in block diagram form in order to not unnecessarily
obscure the present invention.

Overview of a Computer System Used In a Preferred
Embodiment

The preferred embodiment of the present invention
may be practiced on computer systems having alterna-
tive configurations. FIG. 1 illustrates some of the basic
components of such a computer system, but is not meant
to be limiting nor to exclude other components or com-
binations of components. Computer system 100 illus-
trated in FIG. 1 comprises a bus or other communica-
tion means 101 for communicating information, a pro-
cessing means 102 (commonly referred to as a host
processor) coupled with bus 101 for processing infor-
mation, a random access memory (RAM) or other stor-
age device 103 (commonly referred to as a main mem-
ory) coupled with bus 101 for storing information and
instructions for the processor 102, a read only memory
(ROM) or other static storage device 104 coupled with
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the bus 101 for storing static information and instruc-
tions for the processor 102.

Other devices coupled to bus 101 include a data stor-
age device 105, such as a magnetic disk and disk drive
for storing information and instructions, an alpha nu-
meric input device 106, including alpha numeric and
other keys, for communicating information and com-
mand selections to processor 102, a cursor control de-
vice 107, such as a mouse, track-ball, cursor control
keys, etc., for controlling a cursor and communicating
information and command selections to the processor
102, a display device 108 for displaying data input and
output, a digital signal processor (DSP) or other high
speed processor 109 for processing DSP resource re-
quests, an audio port 110 for input and output of audio
signals and a telecommunications port 111 for input and
output of telecommunication signals. In such a com-
puter system configuration, the digital signal processor
109 is considered a coprocessor to the host processor
102. Computer system 100 is used for storing informa-
tion and instructions, such instructions being executed
by processor 102 during run time, wherein the storage
of such information is in memory devices 103 and 104
and in data storage device 105 such as a magnetic disk
and corresponding disk drive. Such instructions and
information are stored in an electronic form on data
storage device 105 and are converted to a series of
electrical impulses when read from the data storage
device 105 and which may be stored in digital form in
RAM 103 for accessing by processor 102 during com-
puter system run time. This series of electrical impulses
in RAM 103 may represent the task and module data
structures to be described in more detail below.

Architecturally, a DSP is a very fast integer Reduced
Instruction Set Computer (RISC) based general pur-
pose microprocessor which includes a pipelined arith-
metic processing unit. A fundamental difference from
true general purpose processors is that a DSP is de-
signed to perform a multiply and accumulate (MAC)
operation very quickly. The MAC operation is heavily
used in DSP programs. It should be noted that DSP
host applications may be written that do not require
DSP coprocessor 109 for execution, but would exploit
them if available. An embodiment of the present inven-
tion is implemented for use on some of the members of
the family of Macintosh ® brand computers, available
from Apple Computer, Inc. of Cupertino, Calif. (Macin-
tosh ® is a registered trademark of Apple Computer,
Inc.). A coprocessor 109 that may be utilized is any
digital signal processor having operating characteristics
and functions similar to those found in DSP 3210 Digi-
tal Signal Processor, available from American Tele-
phone and Telegraph (AT&T) Microelectronics of Al-
lentown, Pa.

Operating System Organization

The operating system organization of this embodi-
ment is separated into two distinct halves for the two
processors operating in the computer system. Referring
to FIG. 2, host applications/clients 210 are handled by
a DSP Manager 211 which operates in the host proces-
sor to direct and spawn tasks which are to be run in the
DSP. In contrast, DSP modules or tasks 220 (which are
spawned by DSP Manager 211 in the host processor)
are operated from within a DSP Kernel 221 which
operates within processor 109. In short, there are two
distinct levels of computer programs which are used for
operation in the preferred embodiment:
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(1) Client (application or higher level toolbox) soft-
ware programs which are executed on the host
processor; and

(2) DSP programs known as “modules” which run in
DSP 109 (FIG. 1).

Therefore, programs may be written for DSP 109 and
host 102 separately. For instance, library routines may
be generated for operation in DSP 109, and those rou-
tines may be available to host-client programmers for
reference during execution. Interprocess communica-
tion between DSP Manager 211 in host processor 102
and the DSP is provided by the DSP Kernel operating
in DSP 109 (FIG. 1) and is provided through shared
memory 230. Shared memory space 230 may be coupled
to bus 101 or can be part of system RAM 103.

Shared memory 230 contains semaphores, data, mes-
sages, and other information which are required for
interprocess communication between the two proces-
sors 102 and 109. DSP Manager 221 is further coupled
to a host driver 212 which provides various hardware
implementation dependent functionality for the DSP
Manager 211 and other functions which are directed to
the DSP Kernel driver 222. Therefore, toolbox routines
may be available to the application/client program 210
to direct various actions in the tools residing in the DSP
Kernel driver 222. Interprocessor communication is
provided through shared memory area 230, as well as
by interrupt lines 231, which are activated when actions
need to be taken by either DSP host driver 212 or DSP
Kernel driver 222. It should be noted that the structure
shown in FIG. 2 is not required for practicing the pres-
ent invention and is set forth for illustration purposes
only. It can be appreciated by one skilled in the art that
many other structures of operating systems to provide
interprocess communication may be used.

The DSP Manager 211 is available to the host ap-
plication/client routines 210 through an interface
known as the application programming interface (API).
In the currently preferred embodiment, DSP Manager
211 performs three primary services which are accessi-
ble through the API. These three services are known as
the client and device managers 211B, I/O services
211C, and data structure managers 211D. These various
services make calls on allocation managers 211E at the
lowest levels of the DSP Manager 211. The DSP Ker-
nel 221 is similarly structured to DSP Manager in that it
includes a module program interface (MPI) 221A
which is accessible by the DSP modules 220 generated
by DSP programmers. MPI 221A accesses services
available to the DSP modules such as I/O services
221B, guaranteed processing bandwidth (GPB) and
control services 221C, and caching services 221D. Un-
derlying these functions is an executive layer 221E
which is responsible for managing task sequence and
frame handling functions. These kernel routines have
access to the DSP Kernel driver 222 and, thus, have
access to the shared memory areas 230, and interrupt
lines 231. In addition, executive layers 221E also has
access to the shared memory area 230 for communica-
tion of messages to and from the DSP Manager 211
residing in the host processor.

Data Structures Used in the Preferred Embodiment

The data structures utilized by the currently pre-
ferred embodiment of the present invention are referred
to as “modules” and “tasks.” A module is a data struc-
ture defined by the system and the DSP programmer
which is designed to perform a predetermined function.
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A DSP module always includes program code, but it
may also include data, input and output buffers, and
parameter blocks. The number of modules and their
required resources are defined by the DSP program-
mer.

A task is a data structure containing a reference to a
list of one or more modules. Thus, a DSP task com-
prises one or more DSP modules. The modules in a task
are grouped in the appropriate order and with the ap-
propriate input/output and buffer connections. Fre-
quently, a DSP task contains only one DSP module. A
task is activated or deactivated as a single unit. Tasks
may be grouped together in order to perform a specific
function. The group of sequentially ordered tasks is
known as a task list. In essence, a task list is a data struc-
ture which references a series of executable modules
(i.e., programs). Also, a set of tasks can be sequentially
or simultaneously activated or deactivated. A task is
installed and removed from the task list as a unit.

DSP modules are provided to an application pro-
grammer as a resource and loaded into a DSP task using
DSP Manager 211. A task is constructed using a series
of calls to DSP Manager 211. These calls create the task
structure, load and connect modules in the desired ar-
rangement, allocate the required memory, and install
the completed task into a DSP task list. Each of the
modules comprises a DSP module header containing
pointer information and other information related to the
data structure and a series of DSP sections which each
point to various resources, including executable code
required by the DSP module to perform its function.

The currently preferred embodiment of module 300 is
shown in FIG. 3. The internal structure of module 300
includes both code and data. Each module comprises a
header and one or more sections. Header 301 contains
information about the entire module such as its name,
GPB information, and control flags. Header 301 also
includes a count of the number of sections in the mod-
ule. This allows module 300 to be of variable length,
and the number of sections to be varied. Finally, header
301 contains the section number which contains the
module startup code.

Module 300 shows sections 302-305. Sections allow
modules to be created for a wide variety of functional-
ity. In the currently preferred embodiment, each section
has a name, pointer, flags, and a data type fields. In
addition, each section contains pointers for up to two
separate containers. Containers hold the data or code
corresponding to the section. The sections can point to
code, data tables, variables, buffers, parameters, work
space, or any other resource needed to provide the
desired function.

A section does not contain the actual code or data
used by the DSP. Instead, a section is a data structure
that contains pointers to the code or data block. The
operating system of the DSP uses the section structure
and flags to cache the actual code or data block into
high speed cache memory during execution of the mod-
ule. Referring to FIG. 4, section 400 comprises name
pointer 401, flags 402, type 403, primary container
pointer 404, secondary container pointer 405-and con-
nections 406. Name pointer 401 points to a character
string which uniquely identifies the section of 2 module.
Flags 402 and type 403 are used by the preferred em-
bodiment to control caching and manage buffers. Con-
nections 406 is data that is used for buffer management
internally to the DSP Manager and is discussed below.
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Primary container pointer 404 points to the primary
container 420, while secondary container pointer 405
points to the secondary container 421. In the currently
preferred embodiment, primary container 420 and sec-
ondary container 421 are buffers. The DSP uses these
pointers whenever it wants to locate the section data.
Every section is normally required to have a primary
container pointer 404, which can point to locations
either on or off the DSP processor chip 109. The sec-
ondary container pointer 405 is optional. If a section has
a secondary container pointer 405, then the primary
container pointer 404 points to where the DSP user
code will access the section and the secondary con-
tainer pointer 405 points to where DSP operating sys-
tem keeps the data between executions of the modules.
Primary container 420 is allocated in local memory if it
contains fixed data or parameters for communication
between the host application and the module. Other-
wise, primary container 420 is located in high speed
cache (on-chip static RAM [SRAM] in the preferred
embodiment) to increase execution performance. The
secondary container 421 is usually allocated in local
memory, but in special cases can be allocated in the
cache. Allocated memory for each container must be in
either local or cache memory.

To execute modules, each module is cached for ac-
cess and execution by the DSP. The currently preferred
embodiment of the present invention supports two sepa-
rate execution models: AutoCache and DemandCache.
In AutoCache, the programmer specifies which code
and data blocks are to be loaded and saved. The DSP
Kernel performs all load and save functions automati-
cally. In DemandCache, the programmer explicitly
moves code and data blocks on and off-chip, whenever
needed, by making the appropriate calls to the DSP
Kernel in the module DSP code.

During caching of an AutoCache module, code and
data are loaded into the cache according to the section
flags prior to its use and then data is saved back from the
cache when execution is completed. In regards to pri-
mary container 420 and secondary container 421 during
caching, the data is moved from secondary container
421 to primary container 420. In the currently preferred
embodiment, this usually entails moving the contents
from local memory to cache memory prior to module
execution. This is commonly known as a cache load.
After module execution, the DSP also moves data from
the primary container 420 to secondary container 421.
In the currently preferred embodiment, this entails
moving the contents from cache memory to the local
memory. This is commonly known as a cache save.
When caching is not required, only one container is
needed, the primary container 420. The use of contain-
ers provides communications between modules and the
host application. This is usually through a shared mem-
ory area which either resides in host memory such as
103, or otherwise, is connected to a bus such as 101
shown in FIG. 1. The use of sections as disclosed herein
provides unique capabilities wherein multiple modules,
either provided off the shelf or written by a DSP pro-
grammer, may be modularized in such as way as to be
joined together in a multiplicity of combinations. Appli-
cation programmers may thereby create their own pro-
gram without addressing the underlying functionality
of DSP-specific modules. In addition, a variety of hard-
ware platforms may be implemented with the section
model providing compatibility with a variety of hard-
ware platforms and future hardware advances.
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An example module with its primary and secondary
containers is shown in FIG. 5. Module 500 is entitled
“Equalizer” and contains five sections as indicated in
header 501. Module 500 has program, variables and
table section pointers 502, 503, and 504 pointing to pri-
mary container 510 containing program information
511, variable information 512, and table information
513. In addition, module 500 has an input and output
buffer pointed to by 505 and 506 which point to input
buffer 514 and sound output buffer 515. A caching func-
tion provided by the system in the preferred embodi-
ment moves information between the secondary and
primary containers prior to module execution and
moves data between the primary and secondary con-
tainers after module execution. The secondary con-
tainer 520 includes code 521, variables 522, and tables
523. Module and secondary containers are located in
local RAM, and primary containers are located in the
cache. In the example shown, code, variables, and table
sections are loaded into the cache prior to executing the
code section provided by module 500. After execution
completes, only the variables are saved back to local
memory.

To execute module 500, memory must be allocated.
The allocation and memory management is accom-
plished in two phases. When the client loads module 500
into memory from a resource file, the DSP Manager
allocates all the required blocks in local memory to hold
the structure. For module 500, the DSP Manager allo-
cates memory space for the module itself and the three
secondary containers 521,522 and 523. Containers
521,522 and 523 are then loaded with data from the
resource file to complete the first phase.

The client must also specify the I/0 connections for
module 500. The specifying of I/O connections is dis-
cussed below. The connections are made such that any
memory allocation eliminates as much buffer movement
as possible. If a buffer can be set and left in one place
without being moved between execution of modules or
tasks, the overhead for maintaining the buffer is also
reduced. Besides specifying I/0O connections, other
modules may be loaded and connected together to form
a multi-module task. Once completed, the DSP Man-
ager calls one of the allocation managers to perform the
cache allocation. Cache allocation by the allocation
managers is the second phase of allocation. Once cache
memory has been allocated to the task, it is ready for
installation. For DemandCache, additional allocation is
performed by the DSP Kernel at run-time.

The Overall Structure of Tasks

The overall structure of tasks to be executed in the
preferred embodiment is shown with reference to struc-
ture 600 of FIG. 6. The system comprises a set of DSP
globals 601 which maintains control and information
regarding each of the DSP devices, such as 602 and 603,
coupled in the system. Each DSP device, such as 602
and 603, may be one as shown as DSP 109 shown in
FIG. 1. In this multiprocessing environment, a plurality
of DSP devices may be used for certain tasks and/or
capabilities in the system. Each of the DSP devices may
be coupled to a bus 101 and reside on the main system
logic board, or be coupled to the bus as expansion de-
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A DSP device, such as 602, handles a plurality of
DSP clients, such as 604 and 605, wherein the client is
either a system toolbox or an application that wishes to
use a DSP 109. A DSP client is activated by “signing
in” the client using a system call made through the DSP
Manager 211. Client and device managers 2115 are used
to manage clients using DSP device 602. In this manner,
each DSP device maintains information about the client
as it relates to tasks that the client requires.

Each DSP device, such as 602, maintains two inde-
pendent task lists 610 and 630 which are used for keep-
ing track of tasks currently running in the DSP operat-
ing system. One task list 610 is known as the “real-time”
task list and is a set of routines which need to be oper-
ated upon at regular intervals. Each task, such as 611
through 614, in real-time task list 610 is executed only
once during regular intervals so that the client requiring
the services of each DSP task in task list 610 is serviced
within a specific interval of time. A technique known as
guaranteed processing bandwidth (GPB) is utilized to
ensure that the tasks in real-time task list 610 do not
exceed the maximum length of time in which real-time
tasks may be executed. GPB is discussed in the co-pend-
ing application entitled “Apparatus and Method for
Allocating Processing Time in a Frame-based Com-
puter System” which has been assigned Ser. No.
07/954,338 and which is attached hereto as Appendix
A. DSP Manager 211, through the client and device
managers 211 b, ensures that an excessive number of
real-time tasks not be inserted into real-time task list
610.

Real-time task list 610 links all the real-time tasks 611
through 614 which need to be performed within the
DSP in a specified interval of time known as a real-time
frame. Each of the “tasks” shown as 611 through 614 is
actually a datum in a data structure which references
the next task datum in the task list. During each real-
time frame, DSP Kernel 211 scans the real-time task list
610 and executes each task 611 through 614 once in
sequential order as indicated by the arrows shown in
FIG. 6. When the end of the real-time task list is
reached, for instance, at DSP task 614, then real-time
task execution halts. Each of the DSP tasks 611 through
614 is actually a datum in a data structure which refer-
ences certain DSP “modules” such as 621, 624, 625, and
627. Modules are related functions or subtasks within
each task. Each DSP module datum such as 621 con-
tains a first field 621a which references the executable
code for the module. A second field, known as the DSP
section(s) fields 6215, is used for referencing all the
resources required by the executable module which is
referenced by first field 621a :

In addition to real-time task list 610, the DSP device
maintains a second task list known as timeshare task list
630. Timeshare task list 630 maintains a similar list of
elements in a data structure, such as 631 through 633,
each of which references so-called “timeshare” tasks or
tasks that do not need to be executed at regular time
intervals. Each of the elements 631 through 633 in the
timeshare task list references “modules”, such as 635,
636, and 639 which all contain references to executable
code and resources required by each of the timeshare
DSP modules. This is a similar structure to that set forth
in the real-time task list described above. The timeshare
task list is executed “round robin” whenever the real-
time task list is not executing.

The maintenance of a separate real-time task list 610
and a timeshare task list 630 allows the grouping of
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functions by priority in the operating system of the
preferred embodiment. Therefore, a distinction is made
about which tasks are time-critical and those that are
not. This is an improvement over the prior art single
task list method which makes no such distinctions and
may burden DSP 110 with more task execution than is
actually necessary.

Time Allocated to Real Time and Timeshare Tasks

The unique grouping of tasks into real-time tasks
listed in the real-time task list 610 and timeshare tasks
listed in timeshare task list 630 provides for certain
powerful capabilities which allow the DSP processing
power to be allocated efficiently and provide for the
execution of real-time tasks as quickly as possible. The
preferred embodiment uses a “frame-based” approach
to handling tasks residing in the two task structures.
The frame-based approach to executing tasks is dis-
cussed with reference to FIG. 7a. As is shown in FIG.
7a, time is divided into uniform discrete intervals
known as frames. A frame N 700 is preceded and fol-
lowed by frames such as 701 and 703 which are the
same length as frame 700. During each frame, the re-
quired program code, variables, and input data for each
of the real-time tasks in task list 610 are loaded into a
high speed cache. The program is executed from the
cache, and the resulting output data is dumped from the
cache back into external memory. Alternatively, the
input data may already be in the cache, from a previous
operation, and the output data may be retained in the
cache if it is needed for following operations. This
method of using a high speed cache is called visible
caching.

The frame-based processing used by the preferred
embodiment requires some latency in the data flow. An
input port of the DSP must collect a full frame’s worth
of samples before the DSP can process them. Likewise,
the DSP must generate a full frame’s worth of samples
before the output port can start transmitting them. This
requires the latency of two frames between input and
output data. This is shown with reference to FIG. 7b.
For instance, the data which would be processed at
frame 750 must be collected during the previous frame
751 while the previous frame’s tasks are being pro-
cessed. Input data N 760 collected during frame 751 will
thus be available to frame 750 for processing. Likewise,
data generated during frame interval 750 will not be
available for output until frame 752, wherein the subse-
quent frame’s data is being processed. Thus, output data
N 761 will be available for output at the time that DSP
110 is processing information in frame interval 752.

Frames vary in duration depending on the needs of
the application program(s) and the available amount of
resources. There are basically four factors which influ-
ence the selection of time intervals for frames. They are:

1. Size of the buffer is proportional to the frame time
interval. The longer the frame, the more cache
memory is needed for each buffer.

2. Overhead reduction is inversely proportional to
the frame time interval. The shorter the frame, the
greater percentage of DSP processing time is used
in overhead. For example, if the frame represents
240 samples, the overhead is 1/240 or 0.42% com-
pared to processing a single sample at a time.

3. Granularity of access. During a frame, the process-
ing sequence cannot easily be interrupted. Changes
in process configurations must happen on frame
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boundaries. The longer the frame, the more granu-
lar the access.

4. Input/output latency for various important algo-
rithms. The longer the frame, the higher the la-
tency between input to output data streams. As
shown in FIG. 75, latency is 2 frames from input
stream to output stream.

Items 1 and 2 pull in opposite directions. Item 3 is
dependent on the application. Sound synthesis with
MIDI (Musical Instrument Digital Interface) is one of
the most demanding potential applications, putting a
lower limit on a frame at approximately 2 to 4 millisec-
onds per frame. Item 4 sets the upper limit on the frame
time. The V.32 data modem has very demanding la-
tency requirements and, has an upper limit of 13 milli-
seconds per frame.

The preferred embodiment uses a ten millisecond
frame time. However, in order to practice the present
invention, it would appreciated by one skilled in the art
that any length frame has equal application here de-
pending on the circumstances of operation.

Generally, each frame is broken up in the manner as
described with reference to FIG. 8. A frame 800 which
is executed for a given interval of time is comprised of
three sections. A real-time execution portion 801, a
timeshare execution portion 802, and a sleep portion
803. The real-time portion 801 is the time actually used
to process the real-time functions which are currently
active in the real-time task list 610 discussed above.
Real-time section 801 may be variable in length depend-
ing on the number of tasks in the real-time task list 610.
However, real-time portion 801 is limited to a maximum
time interval within frame 800 as set by the allocated
real-time guaranteed processing bandwidth limit shown
as time 805 in FIG. 8. This limits the number of tasks
and the length of execution of each of the tasks con-
tained in task list 610.

The second portion of frame 802 is used for execution
of timeshare tasks in task list 630. Timeshare task pro-
cessing is performed within the segment of the frame
which is a portion of the total timeshare available
(ATT) 804. If there are no active timeshare tasks, this
segment is skipped. All timeshare tasks are serviced
round robin during segment 802 until either the frame
ends or all timeshare tasks go inactive. If all of the time-
share tasks contained in list 630 are complete (go inac-
tive) within one frame such as 800, then DSP 110 sleeps
for the remainder of the frame at time portion 803 of
frame 800. In other words, all processing is suspended
and no tasks are performed until the next frame begins,
wherein real-time tasks are again performed at a time
period such as 801 shown in FIG. 8. Timeshare tasks
may not be completed within a time less than the total
timeshare available (ATT) in a given frame, in which
case they take up the entire time period 804, and no
sleep period 803 is present in the frame. Timeshare
processing will continue after the real-time segment of
the next frame. During period 800, if there are no active
timeshare tasks to be performed, the processor actually
goes into a sleep mode wherein all processing is halted
and, in the preferred embodiment, the processor will
shut itself down using a power down instruction. In the
preferred embodiment, a DSP such as the AT&T 32010
issues the “power down instruction.” The DSP will
then be brought back into operation when the next
frame interrupt signals the beginning of the next frame.
This provides for automatic power savings especially in
applications for use on portable computers. In another
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embodiment, DSP manager 211 in the host processor
will even shut down all DSP related circuits contained
in 100, including timers, serial ports, and other related
hardware to further conserve power, if their function is
not required.

The amount of timeshare task time available (ATT)
804 is dependent upon how many real-time tasks are
being run in time interval 801. If time interval 801 is
very short, then ATT 804 may comprise the entire
frame 800.

Determining which processes will be executed during
the real-time portion 801 of a frame, and which task will
be run in the timeshare portion 802 of a frame, and thus
be in one of the task lists 610 or 630, is dependent upon
a number of factors. Real-time tasks are those tasks that
must be executed every frame. This means that the task
must be broken into distinct portions which must be
executed in a frame. Real-time tasks are those that must
be executed at regular intervals, not necessarily as
quickly as possible. Any data stream task connected to
a real-time port is such a task—such as a sound process-
ing task, a speech processing task, or a telecommunica-
tions task. Any of these types of tasks, if connected to a
real-time port such as a speaker, a microphone, or a
telephone line, require real-time service. This type of
processing is known as isosynchronous processing.
Note that the same tasks could be non-real-time if they
were used for off-line processing, such as doing sound
processing of a disk file.

Tasks running in the timeshare task list 630 will give
the maximum available processing time to an applica-
tion. Real-time tasks may run at a guaranteed frequency,
but their overall processing time is limited to the
amount allocated. Even if there is unused processing
time, real-time tasks are required to stay within their
allocated processing time. Timeshare processing is
called asynchronous processing. Some examples of
timeshare tasks include lossless compression of disk
files, graphics, animation, still image decompression or
compression, video decompression, off-line audio pro-
cessing, and other similar applications that require lots
of processing time.

A more detailed view of a frame such as 800 is shown
in FIG. 9. As shown in FIG. 9, at the time of a real-time
frame interrupt at time such as 900, a process known as
a timeshare context save 901 must be performed prior to
real-time task processing, if timeshare was active when
the interrupt occurs. If the interrupt occurs during the
middle of timeshare task list 630 processing, then the
timeshare task context must be saved because process-
ing was halted during an on-going operation. This is
performed at time period 901 as shown in FIG. 9. Once
the timeshare context is saved as driven by the interrupt
at time 900, then real-time interrupt isosynchronous
processing may be performed at time period 902. A
more detailed view of real-time task processing will be
discussed with reference to FIG. 10 below. Then, at the
completion of real-time task processing at time period
902, the timeshare task context, if any, which was saved
at time period 901 is then restored at time period 903. At
time period 904 timeshare task processing of timeshare
task list 630 continues until the timeshare task list 630 is
empty (all timeshare tasks have completed), all time-
share tasks are inactive, or the frame ends. If timeshare
processing ends before the frame ends, as discussed

above, the DSP may issue a power down instruction, -

and go into the sleep mode at time period 803 for the
remainder of frame 800. Note that in this example, be-
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cause the timeshare portion 904 completed prior to the
end of the frame, no timeshare context save is required
to be performed, as was done at time period 901, be-
cause no tasks are remaining in the timeshare task list
630. Therefore, at the beginning of the next real-time
isosynchronous processing period 801 the timeshare
process context will not need to be saved.

A more detailed view of the real-time frame slice 902
where real-time task processing takes place is shown in
FIG. 10. Real-time task list 610 is processed in turn by
executing each real-time task in the list such as 1002,
1005, 1008, and 1011 shown in FIG. 10. Of course, each
real-time task context needs to be saved at the comple-
tion of execution and restored prior to execution. For
instance, real-time task it 11002 requires that its context
be restored at time period 1001 and saved at time period
1003. Similarly, real-time task #2 1005 requires to be
restored at time period 1004 and saved at time period
1006. This save/restore process is called visible cach-
ing, and may be reduced in time if one task utilizes the
output of a previous task, where the data remains in the
cache. In this case, the data does not need to be saved
and restored, which allows one real-time task to access
information from the previous task efficiently, thus
increasing the number of tasks that can run in real-time
frame slice 902. Finally, the last real-time task which is
executed at time period 1011 is saved at time period
1012, and the timeshare slice 802 is then executed in the
manner as discussed above. FIG. 10 is shown in a sim-
plified form, assuming that each real-time task is a single
operation. However, as will be discussed below, a task
is actually comprised of several modules, and each mod-
ule within the real-time task will be executed within the
task such as in a time period 1002 or 1005.

In summary, the process used in the preferred em-
bodiment to perform real-time and timeshare task pro-
cessing is shown with reference to FIG. 11. Process
1100 commences at step 1101, and it is determined
whether any more real-time tasks require execution at
step 1102. This may be done by determining that the
pointer to the next task is nil for task list 610. If there are
more real-time tasks to be serviced, then step 1102 pro-
ceeds to step 1103 wherein the next real-time task con-
text is loaded. The next real-time task is then executed at
step 1104, and its context is saved at step 1105. Then
steps 1102 through 1105 may be again be performed if
there are any more real-time tasks left in real-time task
list 610. Once all real-time tasks have been serviced as
determined in step 1102, 1102 branches to step 1106
which ascertains whether there is time left in the frame
for servicing timeshare tasks. In other words, a mini-
mum period of time must be left in the frame in order
for timeshare tasks to be performed. In particular, there
should be enough time to restore context, do some pro-
cessing, and then save context at the beginning of the
next frame (since all three functions—load context,
process, save context—are required each frame, there
should be enough time remaining in the frame after
real-time is done for all three operations before activat-
ing timeshare). It would be useless to restore the context
if the context cannot be used to complete any process-
ing. In the preferred embodiment, the time required for
restoring and saving timeshare is determined during the
boot process, and made available to the DSP Kernel so
that the decision in step 1106 can be made. If there is
insufficient time to restore and execute timeshare, a
branch is taken to step 1110, and the DSP waits until the
next frame to continue real-time processing.
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If, however, it is determined at step 1106 that there is
sufficient time left in the frame for servicing timeshare
tasks in task list 630, then the timeshare task context
saved prior to the last interrupt is loaded at step 1107. If
there was no previous context, no context is loaded.
However, processing continues to step 1108 in any case.
This occurs in the case where a timeshare task has just
been activated following a period of not executing time-
share tasks. Then, each of the timeshare tasks may be
executed in turn at step 1108 by loading their respective
context and executing the task at step 1108. This contin-
ues until one of two events happens:

1) The next frame interrupt occurs; or

2) There are no active timeshare tasks in task list 630.

If an interrupt occurs first, then the timeshare task
context is saved at step 1109, and process 1100 returns
to step 1101 for real-time task execution. If, however,
there are no more timeshare tasks to execute, then pro-
cess 1100 proceeds to idle or sleep at step 1110 wherein
a power down instruction is issued in one embodiment
of the present invention, or a delay loop is executed in
another embodiment of the present invention, and DSP
110 waits for the remainder of the frame to transpire.
Finally, the next frame interrupt occurs and the process
returns to step 1101. In this manner, real-time and time-
share tasks may be managed according to their require-
ments, and processor bandwidth may be used effi-
ciently.

Before a task is installed in the timeshare task list, it
should first be determined whether that task can prop-
erly be serviced on a timeshare basis, due to the fact that
the total timeshare available varies dynamically.- The
DSP Kernel knows how much processing time is avail-
able per frame, since it is computing the processing
bandwidth for all of the real-time tasks. The total re-
maining (unused) real-time available for use by time-
share tasks may be computed as follows: for each frame,
recompute the average time remaining after all real-
time tasks have completed. A form of moving average
calculation is utilized, such as:

average timeshare=previous average
value-0.9+current frame value-0.1.

This gives each new frame’s remaining time a 10%
weight, against a weight of 90% on the previous aver-
age. Alternate averaging techniques can be used. Also,
it is possible for the DSP Manager to do this calculation
by sampling the value every N frames. While this may
not be as accurate, it simplifies the Kernel.

In addition to the average available timeshare pro-
cessing, the frequency of the timeshare task list execu-
tion is required. If there are many tasks in the timeshare
task list, execution frequency for each task will be low.
A measure of this can be computed by calculating a
moving average of the number of frames required to
completely process the timeshare list once. This must be
done each time through the timeshare task list. The
calculation could be done as follows:

frames used =ending frame number —starting frame
number

average frames used =previous average frames
used-0.9+ current frames used-0.1

Note that it is possible to have a “frames used” value of
zero for tases where few timeshare tasks are active or
installed, or where most of the processing time is avail-
able for timeshare. This will result in an average frames
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used value of less than 1.0. Other averaging methods
may be used. The average frames used value could
alternately be computed by the DSP Manager by sam-
pling the real-time and timeshare frame numbers on a
regular basis. This will be less accurate, but reduces the
Kernel complexity.

By using the average frames used and the average
available timeshare processing per frame, the frequency
in which a new timeshare task will be executed can be
computed as follows:

current timeshare load=average timeshare-average
frames used

proposed timeshare load=current timeshare
load +GPB estimate of task

computed frames used =proposed timeshare load/av-
erage timeshare (the GPB estimate of the task is de-
scribed in the co-pending application entitled “Appara-
tus and Method for Allocating Processing Time in a
Framebased Computer System” which has been as-
signed Ser. No. 07/954,338 and is attached hereto as
Appendix A).

If the calculated “proposed” frames used is too high
(infrequent execution) for the desired function, the task
should not be installed in the timeshare list. Note that a
timeshare client must monitor the processing rate of its
timeshare tasks because change in the real-time load or
in the timeshare task list affects the amount of process-
ing its timeshare task receives. This process can be as-
sisted by notifying a timeshare client whenever a new
real-time task is added to the task list. Another tech-
nique for monitoring timeshare processing rate is for the
client to request the timeshare frame number from the
DSP Manager. The number will be incremented once
for each pass through the timeshare task list. Another
aid to timeshare management is to provide the unal-
located processing value per frame in addition to the
average timeshare value described above. Since GPB
can be allocated and not used, the unallocated process-
ing is typically smaller than the typical average actually
available processing. This number is used to give a
“worst case” computed frame rate as follows:

current timeshare load =average timeshare-average
timeshare frames used

proposed timeshare load=current timeshare
load +GPB estimate of task

computed worst case frame rate=proposed
timeshare load/unallocated GPB

The computation gives the frame rate of timeshare exe-
cution, assuming all real-time tasks are using their allot-
ted processing.

Dividing Tasks Into Modules

Returning to FIG. 6, it should be noted that each of
the tasks residing in either the real-time task list 610 or
the timeshare task list 630 are actually a series of data
structures containing references to “modules” in the
architecture of the preferred embodiment. A DSP
““task” such as 611 is actually a datum in a data structure
known as task list 610 which references a series of exe-
cutable programs known as “modules.” For instance,
one task such as 611 may refer to modules 621,622, and
623. Each of the tasks 611 through 614 and 631 through
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633 are actually elements in a data structure which
refers to these modules. Each of the modules such as
621 through 623 is a series of data structures within
itself. The modules are all related functions within the
task having predetermined functions. In this manner,
having this dual level task structure, related modules
may be associated with one another under one “task”
heading.

A task such as 611 in the preferred embodiment is
made of up of DSP modules such as 621, 622, and 623
and DSP tasks such as 611. Each of the DSP modules
and DSP tasks are data structures, and are distingunished
as follows:

DSP Module—A DSP module is the basic building
block of DSP functionality. It always includes DSP
code, but it may also include data, input and output
buffers, and parameter blocks. The number of mod-
ules and the resources they require are definable by
the DSP programmer.

DSP Task—A DSP task is made up of one or more
DSP modules. This grouping places together, in the
appropriate order and with the appropriate input-
/output and buffer connections, all the basic module
functions needed to complete a particular job. A DSP
task will frequently contain only one DSP module.

DSP modules such as 621, 622, and 623 are provided to
an application programmer as a resource and loaded
into a DSP task such as 611 using DSP Manager 211. A
task is constructed using a series of calls to DSP Man-
ager 211. These calls create the task structure, load and
connect modules in the desired arrangement, allocate
the required memory, and install the completed task
into a DSP task list such as 610 or 630. Modules may be
either programmed by the application programmer or
may be obtained as off-the-shelf library routines called
by the application program which provide certain spe-
cific functionality and achieve a result desired by the
application programmer.

Each of the modules such as 621 comprises a DSP
module 621q, which contains pointer information and
other information related to the data structure, and a
series of DSP sections 6215 which each point to various
resources and executable code required by the DSP
module. This will be described in more detail with ref-
erence to FIGS. 10 through 12. A more detailed view of
one task and its module organization is shown with
reference to FIG. 9.

1200 in FIG. 12 shows the task datum 1201 and its
associated module data 1202 through 1206 which com-
prise a single task entitled ‘“PhoneMan.” PhoneMan
1200 is a phone answering machine task implemented
within DSP 110 of the preferred embodiment. In this
embodiment, the task datum 1201 is shown as having
certain basic information about the task, for instance,
the name “PhoneMan” and is referenced from the pre-
vious task in the task list, and contains a reference to the
next task in the task list. Note that the PhoneMan task
1200 may be either a real-time task or a timeshare task
depending on the application. Also, task datum 1201
contains a reference to a status module 1202 of Phone-
Man which performs various control functions within
the task. For instance, in one embodiment, the control
or status module 1202 may control execution flow
within the remaining modules 1203 through 1205. It
should be noted again that 1202 through 1205 are
merely data structure elements which may be either
linked using pointers, or referenced in some other man-
ner well-known to those skilled in the art. The actual
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executable routine required by such modules will be
referred to in fields contained with each of the data
structure elements 1202 through 1205. As mentioned
previously, modules 1202-1205 may be off-the-shelf,
commercially available modules to the application pro-
grammer, or the application programmer himself may
code modules 1202-1205.

In the example shown in FIG. 12, in addition to the
status module 1202 which controls overall execution of
task 1200, is Subband Encoder module 1203. Subband
Encoder 1203 is used to record messages from the in-
coming caller. The Subband Encoder module 1203 will
reference a Subband Decoder module 1204, which is
used to play greeting or other messages to the caller.
Subband Decoder module 1204 references DTMF
(Dual Tone Multiple Frequency) Decoder 1205.
DTMF Decoder 1205 is used for detecting incoming
touch tone control signais issued by an incoming caller.
The resuits of this module are made available for the
Status & Control module 1202 on the next frame
through shared memory, and thus can be used to modify
the operation of the answering machine program. Note
that in this example, the Subband Encoder, Subband
Decoder, and DTMF Decoder modules are likely to be
available off-the-shelf, while the Status & Control mod-
ule typically would be written to support a particular
application.

The unique structuring of a task into “modules” as is
set forth above provides for certain powerful functions.
This is a distinct improvement over the linear manipula-
tion of a task list which provides no logical connection
between tasks in the task list. So, the primary advantage
of the grouping of functions into tasks and modules, as
is set forth and discussed with reference to FIG. 6 and
12, is to group functions by modules under a general
heading known as a “task” in order to synchronize these
functions very efficiently. Yet another advantage of
using the dual level task structure is to handle error
conditions. So, for instance, if one module such as the
status module 1202 or the Subband Encoder 1203 incurs
an error condition, then the subsequent modules which
may be executed such as 1204 or 1205 may be aborted or
flagged to not load and execute, and a message passed
back to the DSP Manager in the host processor that the
task aborted. Thereby, the entire task datum 1201 may
be flagged in some way that the task has an error condi-
tion, and thus the task may be either reinitialized,
aborted, or removed from the task list. Many error
handling conditions are contemplated within the spirit
and scope of the present invention.

Yet another advantage of the grouping of tasks to
modules under one task heading is to manage the band-
width of the processor in an efficient manner. In this
way, the worst case execution duration (known as
“guaranteed processing bandwidth” or GPB) of the
modules for a task such as 1200 may be maintained in a
datum such as the task data structure element 1201. By
using this worst case timing, the execution of the real-
time and timeshare portions of the frame may be man-
aged efficiently within the bandwidth provided by the
Processor.

In general, the overall advantage of having a struc-
ture similar to that shown in FIGS. 6 and 12 is to allow
efficient client management of tasks by modules. So,
error conditions, insufficient time in a frame, execution
flow (see below), resource allocation (such as memory),
and any other operating conditions which makes refer-
ring to the tasks by modules convenient are made sub-
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stantially easier to the application programmer. Because
tasks can be referred to in a task list, and those tasks by
the modules they reference, process management in the
DSP is much more efficient. Further, development of
application programs is simplified by allowing the de-
velopment of DSP specific modules which can be used
to form application programs.

In summary, the modular architecture of the pre-
ferred embodiment provides a number of advantages
over the prior art. It can be appreciated by one skilled in
the art that the application and utility of the present task
structure between the dual-threaded task lists shown as
610 and 630 in FIG. 6, and the dual-level module struc-
ture shown in FIGS. 6 and 12 has utility far exceeding
that disclosed herein.

Controlling Module Execution Flow

Another advantage provided by structuring of tasks
into modules, as discussed with reference to FIG. 12
above, is that the control of execution flow within tasks
may be accomplished by placing references in each
module to subsequent modules. This is done in the pre-
ferred embodiment by making calls to routines in the
DSP Manager. In this manner, instead of the use of
programming constructs within application programs in
order to control execution flow between modules in a
task, a facility is provided in order to update and pre-
vent modules from even being loaded into memory, and
thus conserving resources and the bandwidth of the
processor. This is done using a technique known as skip
processing.

Skip processing is described with reference to FIG.
13. As is shown in FIG. 13, task 1201, as was discussed
above, is shown, however, each module now has associ-
ated with it a field such as 1302 of module 1202 which
is entitled a “SkipCount.” A SkipCount such as field
1302 indicates which is the next module to be executed.
In the example shown in FIG. 13, status module 1202
contains a SkipCount field 1302. SkipCount 1302 may
contain an integer value indicating which is the next
module to be executed. This allows execution of the
modules to flow properly and be controlled within the
application or DSP program. The value contained in
SkipCount field 1302 may contain a value as follows
which specifies which module is executed next:

SkipCount Action
-1 End task.
0 Execute next module.
1 _Skip next module (and execute
-following module).
2 Skip next two modules.
N Skip next N modules (proceed to

N + 1th module after current
module).

Referring to the example shown in FIG. 13, 1362
contains an x (undefined), indicating that this Skip-
Count value is set by the Status & Control module 1202.
SkipCounts such as 1302 within a module may only be
modified by the module, or by the host. In this instance,
SkipCount 1302 is modified by the module that owns it,
1202. If the phone is on-hook and is not ringing, this
value is set to —1 by a call to the DSP Kernel, and none
of the other modules in PhoneMan are executed. This
frees up the maximum processing for timeshare tasks.

Once the phone rings the appropriate number of
times, counted by module 1202, it is taken off-hook, also
by module 1202. A few frames later, it is appropriate for
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a greeting message to be played. The Control & Status
module 1202 sets its SkipCount field 1302 from —1to 1,
and thus the Subband Decoder module 1204 and
DTMF Decoder module 1205 is activated by skipping
the next module 1203. Subband Decoder 1204 plays the
message, which usually will last for numerous frames,
and DTMF Decoder module 1205 will scan the incom-
ing data to see if the caller is issuing commands to the
application via the Touch Tone keys on his phone. If so,
these values are placed in a shared memory location for
processing by either the application or by Status &
Control module 1202. In this way, a caller my interrupt
the greeting, and access other functions of the answer-
ing machine. These other functions could be handled by
the host application, or by additional modules in the
task.

Once the greeting has completed and a “beep” is
played (part of the greeting, or generated by yet an-
other module), Status & Control module 1202 resets its
SkipCount 1302 to O, causing the Subband Encoder
module 1203 to become active (in other words, skipping
to the next module 1203). Since SkipCount 1303 of the
Subband Encoder module 1203 is a 1, execution pro-
ceeds to DTMF Decoder 1205, and skips the next mod-
ule, Subband Decoder 1204. This selection allows any
incoming message to be recorded, and still maintain the
DTMF Decoder function for continued remote access
control by the caller. Once Status & Control module
1202 determines that the call is complete, it sets its Skip-
Count 1302 back to —1, and processing remains in the
single control module 1202 until a next call is received.

As can be appreciated by those skilied in the art, there
are many configurations possible for a multiple module
task, depending on the function desired and the function
modules available. In the example of PhoneMan task
1200, all of the modules can be standard functions with
the exception of the Status & Control module 1202,
which must be written specifically for the answering
machine application. However, the Subband coders and
DTMEF decoder 1203-1205 modules do not have to be
specific to the telephone application, but can be used in
other configurations and applications and may be com-
mercially available as off-the-shelf components. Nor-
mally, the SkipCount of these modules is initialized to O
when loaded, and must be set to the desired values for
the specific application by the application program
prior to setting the task active. Note again that in the
preferred embodiment, modules may modify their own
SkipCount fields only, but the host processor may also
change the SkipCount in such a module at any time.
This allows a control module such as 1202 to perform
such actions through the host.

A set of examples using the SkipCount field are
shown in FIGS. 142 through 14d. For instance, as
shown in FIG. 14q, all of the modules 1401 through
1405 are executed sequentially in rum because each of
the SkipCounts contained in the modules are 0, except
for 1405 which contains a SkipCount of —1 indicating
that it is the last module in the execution list. Note that
it does not matter what the SkipCount value is for the
last module, since in any case execution of the task
terminates there. FIG. 145 shows an example wherein
modules 1410, 1411, and 1413 are executed in turn. The
SkipCount in 1410 contains a 0, thus indicating that it
should skip to the next module 1411. The SkipCount in
1411 contains a 1 indicating that it should skip the next
module 1412, and thus proceed to execute module 1413.
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The SkipCount of module 1412 is ignored. Module 1413
contains a SkipCount field of — 1 indicating that it is the
last module to be executed.

Yet another example of an execution flow is shown in
FIG. 14c. The execution path in FIG. 14c executes
1420, 1421, and then 1422, in turn. 1420’s SkipCount
field contains a 0 as does module 1421. So, each of those
modules is executed in sequence, passing control to
module 1422. 1422’s SkipCount field is equal to a —1,
thus indicating that it is the last module in the execution
path shown in FIG. 14c. Finally, the execution of the
modules shown in FIG. 144 flows from module 1430 to
module 1433. Module 1430 contains a SkipCount equal
to 2 indicating that the execution should skip modules
1431 and 1432. Modules 1431 and 1432 are skipped and
not executed, and execution proceeds to module 1433.
Their SkipCounts are ignored. 1433 contains a Skip-
Count equal to 0, thus indicating execution should pro-
ceed to module 1434, and module 1434’s SkipCount
contains a —1 indicating that it is the last module in the
execution flow.

Thus, it can be appreciated by one skilled in the art
that control flow of modules arranged in the fashion
discussed with reference to FIGS. 13 and 14¢-144 pre-
vents the unnecessary loading of executable modules.
Thus the unnecessary consumption of resources due to
a program’s loading and saving (even if not functionally
required) is avoided by using a SkipCount field as dis-
cussed above. It can be appreciated by one skilled in the
art that the use of a SkipCount and thus the external
control of execution flow outside executable modules
has utility exceeding that disclosed herein. It should
also be appreciated by one skilled in the art that the
particular value and association of the SkipCount as a
field within the module datum is not required for prac-
ticing the present invention. For example, a SkipCount
may, in an alternative embodiment, represent the next
module to be performed wherein a positive integer
value N would indicate which next Nth module to skip
to, a negative value might be used to return to an earlier
executed module in the task (e.g., —1 means return to
the previous module) and a zero means to end the task.
It can be appreciated that many departures within the
scope of the invention disclosed herein may be made by
one of ordinary skill in the art.

Synchronizing Task Execution

Another feature provided by the preferred embodi-
ment’s unique structuring of tasks in a task list, such as
real-time task list 610 and timeshare task list 630, is the
use of a series of flags to control task execution within
a specified interval of time. Simultaneous task activation
and deactivation is provided for real-time tasks in the
preferred embodiment because certain of these tasks
may be required to be run within a particular time inter-
val of one another. This is required in two cases:

1) A task or series of tasks must be started in sequence
at a particular frame separation on the same proces-
sor;

2) A task or series of tasks must be started in sequence
at a particular frame separation on different proces-
SOTS.

The first case may occur if the first task (data pro-
ducer) does not generate frame-synchronous data (i.e., 2
frames worth of data every frame), and is connected to
a task (data consumer) which requires data every frame.
An example of this is a decoder which works on frames
longer than the current frame rate, and therefore must
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break up the decoding of its data over several frames,
and only has data output when it is complete. An exam-
ple is the MPEG II audio decoder, which uses frames
longer than the standard frame rate provided in the
system of the preferred embodiment. This makes the
data output of such tasks “bursty” rather than frame
synchronous, and thus it must be fed into a FIFO, and
the data consumer must be started some fixed number of
frames later. The host cannot be responsive enough to
be able to ensure that the starting sequence is correct or
in time without a real-time mechanism.

The second case is easier to see. When a series of
frame-synchronous tasks are passing data between them
on a single processor, data synchronization is automatic.
All tasks should be started at the same time, and the data
flow and synchronization is determined by the ordering
of the tasks and modules. However, if the same tasks are
placed on several different frame-synchronous proces-
sors, there is no guarantee of their time relationship
within any given frame. In fact, the data must be trans-
ferred via a buffer such as a FIFO, and the producer
task must be started one frame ahead of the consumer
task, to ensure that there is a supply of data every frame
for the consumer. In the preferred embodiment, a sim-
plified version of the FIFO is used for this purpose. This
simplified FIFO is called a HIHO, and only holds two
frames of data. It can be clearly understood by anyone
familiar with the art that this case—a two frame buffer
and a one frame starting offset—is the minimum latency
case for such a system.

Thus, what is required is a mechanism that allows a
host application programmer to set up the activation of
a set of tasks, which may be on one or several different
DSP’s, where they can be activated in proper sequence
and relative frame position. While it is possible to do
this with two separate mechanisms—one for a single
processor, and a separate mechanisms for multiple pro-
cessors, it is more efficient to do it with a single mecha-
nism.

The method in the preferred embodiment for accom-
plishing this startup synchronization is aiso used for
deactivating tasks. The function is identical. The func-
tion consists of two DSP Manager calls and a routine in
the DSP Kernel’s Executive routine.

The client starts by telling the system which tasks it
wishes to activate (or deactivate or any combination
thereof) by making a series of “Set Task to Activate”
calls. This call, shown in FIG. 15, sets up a data struc-
ture which contains the information necessary to
quickly do the proper operations on the task list when it
is time to do so. The client provides the task name or a
task reference number, and the relative activation
frame. For example, the relative activation frame value
of 0 (zero) means that that task will start first. A value
of 1 means that that task will start one frame after any
task with a value of 0. A value of 2 means a two frame
delayed activation, etc. This may be useful for the
producer/consumer relationship discussed above.

The DSP Manager sets up a data structure with the
required information. In one embodiment, the data
structure is an array. The data required is a means for
rapidly accessing the task structure (a task pointer, for
example), and the frame activation offset value dis-
cussed above. For multiple DSP systems, a DSP refer-
ence is also required to allow error checking. The pro-
cess starts in step 1501, the entry point. Step 1502
checks for errors. In one embodiment, errors include
conditions where the task is still in the process of re-
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sponding to a previous activation/deactivation com-
mand. For a multiple processor system, an error may
occur if one of the specified DSP’s is not frame synchro-
nous to previously specified DSP’s in the current acti-
vation list. Another error is an attempt to synchronize
tasks that are on both the timeshare and real-time task
lists 610 and 630, or to try to synchronize tasks on two
different timeshare-task lists. Neither of these operations
make any sense, due to the nature of the timeshare task
list. If an error occurs, an error code is returned to the
client, step 1503.

Assuming no errors, the process proceeds to step
1504, where it is determined if a activation list has al-
ready been started for this client. Note that there are
various ways to implement this function, but the
method described here is the preferred embodiment. If
no such list exists for this client, then a new list is
started, step 1505. The task is added to the activation list
in step 1506. The list includes all of the necessary data to
accomplish the activation. Finally, the process is com-
plete in step 1507.

The client calls the described routine as many times
as required, setting up the activation list. When all the
required tasks are added to the activation list, then the
client makes a Task Activation call, shown in FIG. 16.

The activation routine entry point is shown as 1601.
Step 1602 checks to see if all DSP’s-referenced in the
current Activation List are running and are synchro-
nized. This repeated check insures that the configura-
tion was not changed during the time the client was
setting up the activation list. If either of these two con-
ditions exist, an error code is returned, step 1603.

Assuming no errors have been detected, step 1604
deactivates interrupts on the host, and calculates the
Reference Frame Number. In the preferred embodi-
ment, this is the current frame number plus 2. Having
interrupts disabled and performing this simple calcula-
tion ensures that the first possible activation frame is far
enough in the future that all task list modifications will
be complete prior to that frame. The value 2 is used here
rather than 1 because it is possible that the current frame
number in shared memory will change immediately
after the value is read by the host. If the first possible
activation frame was the value read plus 1, and the
number changes immediately after being read, the first
activation frame is already under way, and a required
activation may be missed. By adding 2 to the number of
frames to delay the simultaneous start/stop, it can be
assured that at least one whole frame will pass after the
number is read and before the task update process must
be completed.

Note that this mechanism is designed to provide the
shortest possible interrupt disable time for the host. The
list is structured in such a manner that scanning down
the task lists and checking for tasks desired to be syn-
chronized is not required during interrupt disable time.

In step 1605, we check to see if there are any more
tasks to process in the Activation List. If so, we proceed
to step 1606. Here, the offset value provided by the
client is added to the Reference Frame Number. This
gives us the Activation Frame Number for this task. In
step 1607 we store this number in the task data structure
for use by the DSP Kernel. In step 1608, we toggle the
Requested State Flag. This flag indicates if the task
should be active or inactive. It is a request flag, since its
value does not indicate the actual state of the task.
There is another flag, the State Flag, which only the
Kernel can modify, which indicates the actual state of

20

25

35

45

50

65

24

the task. The toggle convention is used in the preferred
embodiment, because this allows the same mechanism
to be used for either activation or deactivation of a task.
However, separate flags can be used in an alternative
embodiment, and this can be handled by the single call
by requiring the client to pass a parameter indicating
which state the process desires, or can be handled by
separate calls, such as “Set Task to Activate” and “Set
Task to Inactivate.”

Once this Activation List element has been imple-
mented, the process returns to step 1605 to check for
additional items in the Activation List. If there are no
more, the process proceeds to step 1609, otherwise, it
returns to step 1606. Step 1606 through 1608 arc re-
peated for each task in the Activation List.

In step 1609, interrupts for the host are re-enabled. In
step 1610, the activation list is disposed of. Alternate
embodiments may require the client to do this. Finally,
the process is done in step 1611.

At this point, the client has completed all of the steps
required to activate or deactivate a set of one or more
tasks. Note that each step in the process does not re-
quire any waiting by the host—each call is immediately
processed. This was another of the requirements for the
mechanism: in a multi-tasking system, it is desirable to
avoid idle loops waiting for some other process to com-
plete. This eliminates wasted host processing.

This process is designed to complete at the latest well
before the end of the frame preceding the first activa-
tion frame. This prevents any race conditions between
the host and the DSP processors, and ensures a proper
sequencing of tasks in time.

The DSP Kernel Executive program is responsible
for the sequencing of tasks on the DSP. The relevant
portion of the Executive for handling the task activa-
tion/deactivation function is shown in FIG. 17.

The entry point for Kernel Activation event servic-
ing is shown in step 1701. The Kernel compares the
actual status of the task with the requested status in step
1702. If they are the same, the process continues to step
1706. If they are different, the process goes to step 1703.
Step 1703 checks to see if the activation frame number
is the same as (or less than) the current frame number. If
it is, then processing continues with step 1704. Other-
wise, processing continues to step 1706. Step 1704
changes the active status to be the same as the requested
status. Step 1705 sends a message to the host to indicate
that the activation or deactivation has been completed
for this task. This step is important when power man-
agement is desirable, as in a portable application. This
message allows the Power Manager, a part of DSP
Manager 211, to determine when power can be reduced
or eliminated in the DSP subsystem. This is possible
because all task activations and deactivations are han-
died by this mechanism. Once the task activation or
deactivation is complete, the process continues with
step 1706.

Note that if the activation frame number is less than
the current frame number, an activation error has oc-
curred—i.e., the task should have been activated in an
earlier frame. This should never happen in a properly
configured system. However, in some embodiments,
this error could be checked for and reported via a mes-
sage to the DSP Manager and the task’s client.

In step 1706, the Kernel determines if the current task
is active or inactive. Note that the state may have just
changed. If the task is inactive, processing continues
with step 1708 by looking for the next task. Otherwise,
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step 1707 executes the current task. In either case, pro-
cessing continues with step 1709. The activation process
shown in FIG. 17 is repeated for each task in both the
real-time and timeshare tasks lists.

An alternative embodiment of simultaneous task acti-
vation/deactivation is shown in FIG. 18. Simultaneous
task activation/deactivation process 1800 starts at entry
point 1801 and it is determined at step 1802 whether the
simultaneous task semaphore has been activated by one
of the clients being serviced by the DSP. If the simulta-
neous task activation semaphore has not been activated
by a client, then process 1800 proceeds to run the task at

_step 1807 and return at step 1809. However, if the simul-
taneous task activation/deactivation semaphore has
been activated as determined at step 1802, then it is
ascertained at step 1803 whether this client owns the
semaphore. Any clients not owning the semaphore will
be able to read the semaphore, however, they will not
be able to modify the semaphore. Therefore, once a
client owns the semaphore, and if a subsequent client
seeks to access it, then step 1803 will lead to the end of
process 1800 for this task. In short, the task is bypassed
until the semaphore is either not activated as deter-
mined in step 1802, or it is determined that the client
owns the semaphore.
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If, however, the client checking the task activation

semaphore does own the semaphore as determined at
step 1803, then the toggle flag is checked at step 1804.
The toggle flag instructs the DSP manager to “toggle”
the state of the active flag. This is performed at step
1805. The active flag is used to activate the task. Thus,
once a semaphore has been activated, the active flag
will control the execution of the task. However, the
execution of the task will only take place when the task
active flag has been set. Otherwise, the task active flag
is cleared, and task execution is halted. Therefore, the
toggle flag provides a means for simultaneous task acti-
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vation or deactivation depending on the state of the
active flag. On a subsequent pass through process 1800,
if the toggle is not set as determined at step 1804, then
the task active flag is checked, and if set as determined
at step 1806, then the task is run at step 1807, and pro-
cess 1800 returns at step 1809. In a similar manner, once
a task has been activated in a single frame as in a previ-
ous execution pass of process 1800, the task active flag
can be toggled again as determined at step 1804 and
performed at step 1805. Then, a subsequent pass
through 1800 will determine if the task active flag is set
at step 1806. If the task active flag is therefore cleared,
then process 1800 will proceed to 1808 and the task
execution will be halted. Then process 1800 may end at
step 1809. At that point, the client may release the sema-
phore, and thus normal execution of all tasks in the
real-time task list 610 may again be performed normally
until another task obtains control of the task activa-
tion/deactivation semaphore.

Thus, a means for activating tasks simultaneously or
in sequence in one or more task lists is provided by
processes 1500, 1600, 1700, and 1800 as set forth above.
Although this has been described with reference to
specific flags and data structures, it can be appreciated
by one skilled in the art that this may be implemented
with various embodiments without departing from the
spirit and scope of the present invention.

Thus, in summary, an improved method for task man-
agement in a processor has been provided. Although
the present invention has been described particularly
with reference to FIGS. 1 through 18, it will be appar-
ent to one skilled in the art that the present invention
has utility far exceeding that disclosed in the figures. It
is contemplated that many changes and modifications
may be made, by one of ordinary skill in the art, without
departing from the spirit and scope of the present inven-
tion as disclosed above.

"APPARATUS AND METHOD FOR
X2 ALLOCATING PROCESSING TIME
AME-BASED COMPUTER SYSTEM

The present _invention. pertains to the field of real-time processing in frame-

based processing computer systems. More particularly, the present invention relates

to an apparatus and method for measuring and controlling execution time in a frame-

based computer system so that real-time tasks from different applications can be

dynamically scheduled without conflicts on the processing system.

BACKGROUND OF THE INVENTION

Time correlated data such as sounds, images, speech, stc. are by their nature

analog (i.e. continuous). However, computers are, for the most par, digital (i.e.

discrete). In order for a digital computer tc process analog signals, the analog signais



-

5,448,735
27 28

are first converted into digital signals which represent the analog signals. This is
accomplished by repeatedly sampling the analog signals in short time intervals and
converting each sampled value into a digital value. The resulting digital signal can
then be processed by the digital computer. The processing of such digitized signals

by & computer is known as digital signal processing.

Presently, digital signal processing is being applied to multimedia applications
whereby text, audio, speech, video, data communications, and othe‘r time correlated
data are iptegrated to create a more efiective presentation of information. However,
handling these applications in a real-time environment requires a large amount of-
processing power. The computer's Central Processing Unit (CPU) typically does not
have the requisite processing power. in order to handle the load associated with
operating these tasks in real-time, one or more dedicated digital signal processors

(DSPs) are employed.

A DSP is designed to accept incoming samples at the average rate that the

samples are being generated by an input process. The DSP then processes the input

samples accordihg to a computer program and produces outgoing signals at the

average consumption rate of an output process. One efficient method for performing

e

real-time processing on a DSP is known as frame-based processing. In frame-based
processing, time is divided into a series of discrete units known as "frames,” within

which all the required signal processing for that frame is completed.

This is accomplished by dividing digital signals into groups v&hich represent the
same amount of timé as a frame. For example, given that-Compact Disc audio data
runs at a rate of 447,7100 samples per second and assuming a frame rate of 10
milliseconds (100 frames per second), thers would be 441 samples per frame. During
each frame, the corresponding program code, variables, and input samples are
loaded into & high speed cache. From the cache, the input samples are then
processed according to the tasks. Finaily, the resulting output data is dumped into an

output buffer to be used by an output process.
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in a frame-based architecture, ezch of the tasks is typically linked or associaisd
with one another through a data struciure. An interrupt or other timing signal is
generated and sent to the DSP at the beginning of each frame. This initiates the

processing of the data structure, such that each task is sequentially executed within 2

frame.

One of the advantages of frame-based processing is that it reduces the task =
switching overhead; For example, given four tasks each handling a sample stream of’
44,100 samples per second, if each task must be run once for every s.ample, you have
a total of 4-44,100 or 176400 task swilches in a second. By implementing frame-
based processing running 100 frames per second and given the same four tasks, each
of which run 100 times in a second, reguires only 400 task switches per second. This

‘reduces the task switching overhead by a factor of 441,

One major drawback with a frame-based system is increased latancy. A
processing system that handles cne sample at a time can respond in the next sample
toa change in the input. In a framé-based sysiém, a response takes two frames. This

is because data is collected in one frame, processed in the next frame, and output in

== - -

* +the following frame.

Another problem with frame-based systems is that, because each individuz!
frame is of a fixed time duration, there exists only a certain, finite amount of proces;sing‘
time per frame. Consequently, when a number of tasks are being processed in rez!-
time, it must be ensured that the frame's processing time i.s not exceeded. Otherwise,
the real-time process will be disrupted in an unacceptable manner. Under certain
circumstances, a frame's processing-might be exceeded when exec.uting the tasks tc
be processed during that frame. Forinstance, an unexpected aspect of one of the :
task's algorithms might cause that task to require more processing time, resulting in 2
frame overrun. Another example which might lead to a frame overrunis if atask is
sensitive to input data, and the data has been corrupted or damaged. Indeed, an
cverloaded bus might deteriorate the system performance to a point whereby a frame

overrun occurs. In some cases, such as debugging a program on a line-by-line basis,
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frame overruns are inevitable. Sometimes a task's algorithm might operate properly
83.8% of the time, but due to a defect, a particuler command or daia sequence results

in an endless loop or an inordinate increase in processing time.

Ensuring that 100 parcent of the {rame’s processing is not exceeded is relatively
easy to implement if there is only one application-running a single task. When the
applicatiém is being written, the programmer can account for particular tasks and
adjust the processing accordingly. In contrast, if a variety of multiple tasks are being
installed and run by a number of diiferent applications, a serious problem arises in
determining whether there is enough precessing power left in a particular frame for
handling subsequent applications and/or tasks processing requests. Differant

hardware substantiations or configurztions may also affect the processing load.

Thus, what is needed is an apparatus and method for determining 1) the

processing time available within a frame when an additional task is about to be
installed and 2) the worst-case processing tims for that task. These two values can be

compared to guarantee that when a task is mstaued n can be fully executed within that

frame It weuld also be beneficial for the apparatus and method to be simple to

-

T e

xmplement have low coverhead, and aiso be dynamic (i.e., adaptwe in real-time to the

real environment). -

SUMMARY AND OBJECTS OF THE INVENTION

In view of the problems associated with frame-based processing, one object of
the present invention is to provide an apparatus and method for allocating a frame's
processing time so that the time required to process real-time tasks associated with

that frame does not exceed that frame's total processing time.

Another object of the present invention is to calculate the worst-case processing
time fora grdup cf medules for a task rather than simply adding together the

processing times for the individua! modules.

Ancther obje?:t of the present invention is to provide scaling vectors so that a

piece of code can operate over varicus instantiations.
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Another object of the present invention is to implement a frame-based allocation
apparatus and method which is dynamic (i.e., adaptive in real-time to the real

environment).

The currently preferred embeciment of the presen:: invention also includes &
second task list, called the timeshare task list. This task list is exécuted in any excess
time within each frame that is not requfred to execute the real-time task list. Thisis |
referred to as timeshare processfng. Another object of the present invention is to

determine whether an application can be properly serviced on a timeshare basis.

These and other objects of the present invention are implemented in a frame
based computer system which utilizes z digital signal processor for processing a
plurality of tasks in a real-time envircnment. When an application requests that a
particular task be processed in real-time, the present invention determines whether
there is enough processing time avaiizble within each frame to process the task such
that the frame's total processing time is not overrun. This is accomplished by first
determining the task’s procéssing time. A taskis constructed of one or more
processing modules. The task's processing time is calculated by adding together the
time it takes to process the modules for a worst-case utilization situation. A medules'
processing time” is either an actually'measure'd'processing time (as measured by a
. limer) or an estimated processing time. Whether the-actual or estimated value is used
depends on the type of algorithm used in the module and the current status of the
module. The present invention categorizes algorithms into three different types:

smooth, smari-lumpy, and dumb-lumpy.

Next, the real-lime task list's processing time is determined. The task list
includes the tasks which have already been instalied and will be executed within the
frame. The task list's processing time is determined by adding together alf the
processing times of the installed tasks. The amount of processing time availzble is*
calculated by subtracting the task list processing time from the frame's total availzble
processing for realtime. The additional task is installed in the task fist if the frame's

available processing time is sufficient to handle the additional task's processing
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requirement. Otherwise, a signal is generated 1o indicate that the task canno: be

installed.

In additicn, the present invention enhances the modularization of digital signa!
processing functions for various configurations by implementing scaling vectors. The
scaling vectors enable one module to function in multiple instantiations. Furthermors,
scaling vectors allow for a rnodule’s processing time to be dynamiczlly varied,

depending on the availability of the frame’s processing time.

The present invention can alsc be used to aid in the determination of whether 2
particular task is serviceable on a timashare basis.
ERIEF DESCRIPTION OF THE DRAWINGS

The present invention is iilustrated by way of example, and not by way of

~ finttation, in the figures of the accompanying drawinaé'and— in which like reference

riumerals refer to similar slements and in which:

Figure 1 illustrates a computer system as may be utilized by the preferred
embodiment of the present invention. :

Figure 2 illustrates a software system architecture as may be utilized by the
preferred embodiment of the present-invention.

Figure 3 illustrates a sequence of frames inciuding the processing of a Sound

Player task in one of the frames.

Figure 4 illustrates a programming structure having tasks in a task list and

modules associated with each task.

Figure 5 is a char of the GPB Actual value for a particular module.

Figure & is a chart illustrating the GPB Estimate value for a particular meduls.
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Figure 7 illustrates a smooth algorithm.

Figure 8 illustrates the states of the UseActualGPB flag and the

DelayUseActuzalGPB flag in reference to the processing of a smari-lumpy module.

Figure 9 illustrates a Telephone Answering task comprised of grouped

modules.

TAI RIP .

A method and apparatus for handling the .al‘loc_ation of real-time resources that

]

is dynamic (i.e. adaptive to real-time in a real environment) is described. In the
following description, for the purposes of explanation, numer-ous specific details such
. as register and buffer sizes, frequencies, frame lengths, timer values, sample rates,
scaiing veciors, GPB values, etc. are set forth in order to provide a thorougﬁ
understanding of the pressnt inventicn. i will be apparent, howeve}, to one skilled in
the art that th'e present invention may be practiced without these specific details. In
other instances, wali-known structures and devices are shown in block diagram form

in order to avoid unnscessarily obscuring the present invention.

Qverview of 3 Computer Svstem in the Preferred Embodiment

Referring to Figu_re 1, the processing system upon which the preferred
embddiment of the present invention may be practiced is shown as 100. Apparatus
100 comprises a processing unit 110 which is, in this embodiment, a digital signal
processor (DSP). Forinstance, 110 may be a DSP3210 Digital® Signal Processor,
available from American Telephone and Telegraph (AT&T) Microelectronics of

Allentown, Pennsylvania. DSP 110 is driven by a DSP clock 111 which provides a

timing reference.

Processing system 110 is alsb coupled to an audio serial DMA (direct memery
access) circuit 120 which facilitates transfers between a local memery 112 and/or
information transferred on bus 150. In some embodiments, there is no local memory -
'112, so DMA circuit 120 may allow DMA transfers on bus 150. This may include

information transferred via bus 150 from a host processor circuitry 180, and/or host



5,448,735
39 40

processor memory (not shown). In addition, audio serial DMA circuit 120 provides
output to an audio port such as 122 in a serial fashion as driven by a serial clock 121.
DSP 110 is also coupled to a telecom port 112 for transmission of serial and bit
input/output information, such as fax and/or computer data information transmitted over

telephone lines.

Processing system 100 further comprisgs_ a bus control unit 140 which is
coupled to DSP 110 and a bus interface circuit 130 which facilitates communication
" between 100 and bus 150. Bus 150 may be either the computer bus in which 100 is
installed, or may be a host bus coupled to a host processor 160. Bus 150 may be
coupled to other devices such as input/output units, memory, peripheral interfaces (not

shown) for providing various capzbilities within the. system. -

Processing system 100 shown in Figure 1 may be implemented as ci}cuitry
residing on a motherboard (main circuitry board) of a com;;uter system or, in another
embodiment, it may be implemented 2s an expansion card insertad fmo asltina
computer system and thus communicate with host processor 160 over a
communication bus 150. In one embcediment, host 180, bus 150, and processing
system 100 may be one of the Macintosh® family of personal computers such as the
Macintosh® Il or Macintosh® Quadras manufactured by Apple Computer, Inc. of
Cupertino, California (Apple and Macfntosh® are registered trademarks of Apple
Computer, Inc.). Host 160 may comprise one of the 68000 families of
microprocessors, such as the 8020, 68030, or 68040 manufactured by Motorola, Inc.
cf Schaurﬁburg, Hlinois. |

It sheuld be noted that the struciure .of processing system 100 is shown as one
embodiment and is not necessary for practicing the present invention. It shouid also
be notéd that in another embodiment, 2 plurality of additional DSPs méy be couplec to
a bus 150 such that a multiprccessing environment may‘ be employed o provide
enhanced capabilities. It will be appreciated by one skilled in the art that many
departures and modifications of the circuitry shown in Figure 1 may be employed to

practice the present invention.
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Overview of the Software Architectyrg

The operating software for the preferred embodiment works on a team
processing basis. In particular, careful attention is paid to the division of labor

between the host processor and the DSP. The overall system architecture is
illustrated in Figure 2. A host application or client 201 interfaces with 2 DSP Marager

202. The host application or client 201 represents e_i;her a specific application
- E?ogram or a higher level toolbox that is being ‘acce—ssed by a host application. The
term client is commonly used to describe a relationship bet\ﬁ.een a resource and a
rescurce requestor: In this case, the resource being requested is the DSP processor.
A toolbox refers to a predefined set of callable routines that carry out commonly used
functions. Typically, such toclboxes are associated with a particulalr function (e.g.
generating a graphical output). The host application may.make use of the DSP
functionality either directly by accessing the DSP Manager or through a higher level
toclbox. ) N

The DSP Manager 202 provides the host functionality through which host DSP

applications are developed and controlled. The DSP Manager 202 further interiaces
with éDSP Host Driver 204. The DSP Host Driver 204 executes on the host processor
and provides specific hardware dependent functionality required to interface with &
particular DSP processor and haraware implementation. The DSP Manager 202
furiher interfaces with 2 Shared Memory 218. The Shared Memory 218 may be’
defined in either or both local memery or main memory. Main memory is the system
DRAM. Local memory may reside on 2 plug-in card, or‘o‘n the main logic board, or
may be defined as a portion of main memory. It is through this Shared Memory 218

that the DSP Mznager 202 and the DSP Kernel 211 communicaie.

in regards to the DSP processor, a DSP module 210 interfaces to the DSP
Kernel 211. DSP module 210 represents a particular function or progrém that has
been written for the DSP processcr. The DSP Kernel resides in a storage location
directly accessible by the DSP processor. The DSP Kernel 211 inierfaces to 2 DSP
Kemel Driver 212 and Shared Memory 218. The DSP Kernel Driver 212 centains

hardware dependant routines and resides in local or system memory directly
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accessible by the. DSP processor. The DSP Kernel Driver 212 communicates to the
DSP. Host Driver 204 via the Shared Memory 218 and through direct interrupts 218.
The combination of the DSP Manager 202, DSP Host Driver 204, Shared Memory
218, DSP Kernel 211, and DSP Kernel Driver 212, comprises the DSP Operating
System 220.

"~ Programming Structures

The programming environment of the currently preferred embodiment of the

present invention is comprised of' three basic structures: sections, modules, ‘and‘tasks.
The basic structure for a DSP application is the section. A section contains information

~ concerning the DSP executable code, data, variables, and input/output bufiers. A
number of sections are grouped together to form a module. Moduies are provided to
the host programmer as a resource and are loaded intc a DSP task structure by using
the DSP Manager. A module contains information for linking modules together a;zd for
controlling the execution of the module, thereby enabling the DSP Manzager and the

DSP Kernel to perform their functions.

Certain modules are grouped together o form tasks. Freguently, 2 DSP task
will contzin only one DSP module. The reason for forming a task is to place together
in an approprigte order and with appropriate l/O buffer connections, all of the basic
module functions required to periorm a particular job.- A fur‘ther reason is to insure that
the combined functions execute as a set, thereby proviaing consistent execution

| results. Tasks and their re'spective‘ modules are stahed and stopped as a unit,
installed and removed from the task list as a unit, and are built and connected to datz
streams as a single unit. A task is constructed by the host applicatic'm‘programmer,
using a series of calls to the DSP Manager. These calls create the task structure, load
and connect modules in the desired arrangement, allocate the reguired memory, and

install the completed task onto the DSP task list.

ranteed Processing Bandwigth
Figure 3 illustrates an example of time being sliced into a series of frames 311-

315. Frame 313 is the current frame; frames 311 and 312 are previous frames which
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have already been executed; and frames 314 and 315 are future frames which will be
executed following the execution of frame 313. Figure 3 also includes an example of a
Sound Player task consisting of mcdules 316-321. Frame 313 has been énlarged to
provide a more detailed view of the execuﬁon.éf the Sound Player task. The Sound

- -Player task’s modules 316-321 processes énd mix&% three channels of sound (e.g.
music, speech, and sound effects) by switching between five different modules 315-
321 to sequentially_ process blocks of data through different algorithms. A CD-XA
decompressor 316 is used to decompress compressed music or compressed speech.
Nextsa sub-band decod'er 317 and an 8 to 24 kHz sample rate converter 318 are
used to process speech that was compressed with telephone quality for a ﬁigher
compression factor, and then up-convert to the system trénsport rate. A 22254510 24
kHz sample rate converter is implemented for processing sound effécts recorded zat 2
rate different than the 24 kHz system rate. A 24 kHz audio mixer 320 is implemented
to mix the three sound channels. Finally, the sound is output to the spezker FIFO in
321. Befdre and after each module execution, caching operations 323 with context

switching are performed.

It can be seen that the Sound Player task 316-321 uses approximately half of
frame 313. Other tasks could be run in the time remaining 322 in frame 313.
However, it must first be determinéd whether each additional task can be completely
executed within frame 313. Hence, wihenever a client requests that a task be installed,
the operating system needs to determine whether there is enough time avazilable to
prccess that additional task within the subsequeni frames. The present invention
accomplishes this by implemeﬁting a Guaranteed Processing Bandwidth (GPB)

system.

The GPB system is comprised of a set of two registers and three flags
associated with each module.ﬂ Thess registers and flags pertain to and are stored with
each module. The two registers are the GPB Actual Register, which stores the GPB
Actual value, and the GPB Estimate Register, which stores the GPB esﬁmated value.
The three flags ére the UseActualGPB flag, the DelayUseActual flag, and the

DontCountThisModule flag. The czlculations of these values and how the flags are
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set, as well as the functions and rationales behind each of these registers and flags,

are explained below.

T e

GPB Actuzl Register
The GPB Actuzl Register is initialized with the value 0. Whenever a module is
run, the time required to process that module is calculated. This is accomplished by
implementing a continually running timer. The timer is assumed to be countind at a
rate proporticnal to the basic instruction rate of the processor (i.e., the DSP Clock 111
in Figure 1 supplies the clock for both the processor and ti:le timer prescaler).
Immediately prior to the DSP Kernel beginning to process a module, the timer value is
read and sa?ed. When the DSP Kemel completes processing the module, the timet
value is, again, immediately read and saved. The difference between the first timer
value and the second timer value cetermines the elapsed time required to process that
first module. The elapsed time includes all system activities such as caching
operations, /O operations inherent in execution, set-up, the execution of the module,
bus accesses, any clean-up process at the end (e.g. uncaching, saving back to
memory, output operations, eic.) in other words, the elapsed time is the total time
required to process that particular mcdule. This actuzally measured process time is

stored in the GPB Actual Register. ‘ .

By adding together the procsssing times for each module in the task list, the
task list's procéssing time can be determined. Figure 4 illustrates a typical
programming structure wherein a task list 400 has tasks 401-403 ready for execution.
Task list 400 is used to identify tasks waiting for execution. Task 401 is comprised of
three modules 404-406. Task 402_ is comprised of a single module 407. Lastly, task
403 is comprised of\the two modules 408 and 409. Each module is comprised of

sections (not shown).

The order of task execution is frcm top to bottom through the task list (e.g. 401,
next 402, followed by 403). The orcer of module execution is from left to right. For

example, with respect to task 401, module 404 would be executed first, followed by
mcduie 405, and finally module 408. The host application program specifies whether

-
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ataskis active. If a task is not active, it is bypassed in the execution order. Similarly,
- -the exscution of a specific module may be bypéss&:‘ by implementing & module skip

-mechanismi.

Referring to Figure 4, when the DSP Kernel starts execution of task 401, the
timer value, tg, is read and saved. At the end of module 404, the timer value, 12 is read
and saved. The diiference in time between {2 and tg is the elapseo‘. time 410. Elapsed
time 410 is the time required to process module 404, which also includes ali system
activities as described above. When the DSP Kernel stops executing module 405, the
timer value is again read and saved. The elapsed time 411 (i.e. ta-t2) is the time
required to process module 405. At the completion of module 406, the timer value is
agzin read and saved, tg. The elzpsed time 412, between i and t4, is the time
required to process medule 406. The time required to process task 401 is the
cumulative times 410, 411, and 412. This procedure can be repeated for tasks 402
and 403 to determine the total processing time for task list 400. Note that ﬁ‘mer vaiue

15 is the tg value for task 402. -

If a task is inactive, the timing method described above adds the processing
time to skip over the inactive task into the GPB value of the next module that executss.
For example, if task 402 was inactive, the value tg would end up becoming the {g for
task 403. Thus, the time to execute module 408 would include the time to skip over the
inactive task 402. To avoid this, the start value used for a task shouid be reloaded
from the timer if the previous task is inactive, rather than using the final value from the
last module of the previous active task. This process in effect does not count the
inactive task skip time. However, when the task is active, the processing load will be
substantially greater than when it is inactive. The “inactive skip” processing time can

thus be assumecd to be included as pan of the active processing time.

Every time a module is processed, the above measuring procedure is
performed on that module to determine the time required to process that module. The
actual measured module processing time is compared to the value in the GPB Actual

Register. The larger of these two values is stored in the GPB Actual Register. This
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resuits in a peak detection algorithm, wherein the m_a;d—muh actual GPB used,
i'nc!uding bus and VO variations, is maintained in the GPB Actual Register. In other
words, the GPB Actual value gives the worst case processing time that is being used

by that module, up to that point in time.

Figure'5 is a chart which illustrates the GPB Actual value for a sample module.
The y-axis is the measured actual processing time used by a particu.lar module. The x-
axis represents real time. The GPB Actual Register is initially loaded with a value of 0.
The module is procéésed a number of times, as indicated by the shaded rectangles\.
Each time the module is processed, the actual processing time is compared with the
value in the GPB Actual Register. If the actual processing time is greater than the
value)in the GPB Actual Register, the actual processing'time replaces the value in the
GPB Actual Register. This results in a GPB Actual value 500. Note that the GPB
Actual value 500 is updated after the latest value is computed and after the module

ccmpletes execution of that frame.

<

GPB Estimate an;ismr

Each module alsc has an associéted GPB Estimate Regisier. The GPB
Estimate Register is initia”y lcaded with a GPB Estimate value by the DSP _
programmer or Sy automatic profiling tools. The GPB Estimate value is the estimate
maximum level of processing time that could be used by that mddule. An estimated
value is used because certain portions 61‘ the processing tin.19 depend on bus latency
and other factors, such as different machinés or implementaﬁoné, or even for the same
machines when users reconfigure them with optional add-in expansion cards. Figure
6 is a chart which illustrates the GPB Estimate value 600 for a particular module. The
GPB Estimate value can be determined experimentally, calculated by the DSP tocls,
or profiled in reference to a timer.

in the currently preferred embodiment; the processing times are measured as a
function of instruction cycles. By using DSP instruction cycles as the unit of
measurement, the execution time adjusts to the speza_of-ﬂ;e particular DSP being
used. For example, with 10 millisecond frames, 166,666 cycies are available at 60

nanosecond instruction cycles and 125,000 cycles are available for 80 nanosecond



5,448,735
53 54

instruction cycles. Consequently, if a processor is bperated at 60 nanosecond
instruction cycles, instead of 80 nanosecond instruction cycles, more instruction cycles
would be available for that particular frame. The precessing speed is known by the
DSP driver for that particular hardware implementation. When the QSP Kernel is
computing the processing time available, it requests this information {rom the DspP
Driver and is factored into the calculations. The values stored in the GPB Actual anc\i
GPB Estimate Registers are in reference to processor instruction cycles. Thus, when

processing times are described, it is in reference to DSP instruction cycles.

Algorithm Cateaories

The GPB Actual and GPB Estimate Registers are used differently, depending cn
how the module's algerithm is ¢ onzed Module algorithms are broken into three
separate categories: smooth, sma: rt-lumpy, and dumb-lumpy. A smocth algorithm is
cne that consistently takes approxmately the same amount of tlme to execute per
frame. The discreparcies in execution times for different frames are due to minor -
variations within the algorithm and also due to variations outside the control of the
algorithﬁ, such as /O processing handled by the DSP Kernel and Bus overhead,
which varies depending on the amceunt of bus traffic. These discrepancies should be .
kept to within a few percent in order to qualn‘y as a smooth algonthm Figure 7
illustrates a smooth algorithm. Some examples of smooth algorithms include
algerithms for implementing Finite Input Respon;e (FIR) and lnﬁnﬁe lﬁput Responss
(IIR) filters, equalizers, echo processors, ete. Generally, a smooth algorithm does

some fixed amount of processing with little or no decision making.

A lumpy algorithm is characterized by periods of heightened activity. A lumpy

algorithm might use various amounts of processing time for sach frama. The

processing time varies depending on the data being processed, the status of the
function the medule is processing, and other variables. Figures 5and 6 depict lumpy

algorithms.

A smart-lumpy algorithm is an algorithm which has the ability to determine,

pregrammatically, the instances when it is executing code that results in its using-
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maximum processing time. An example of a smart-lumpy algorithm is a mutti-rate

modem. A multi-rate modem has various stages, such as initialization, setup, and dztz
transfer. The maximum processing time is usually a_ssociated with the steady state
data pump. In the preferred embodiment, when the maximum processing time
situation occurs, the smart-lumpy aigorithm initiates a call to the DSP Kernel, which
then sets the UseActual GPB flag. The DSP Kerne! does not actuzlly set this flag unti}
the GPB calculations for that mocule are completed. This aspect will be explained in

greater detail below.

A dumb-lumpy algorithm is an algorithm which does not have the ability to
detsrmine, programmatically the instances when it is executing code that will result in
its using maximum (or beyond maximum) processing tirrle. “An exampie of a dumb-
lumpy algorithm is analogous to a Huffman decoder. A Huffman decoder takes longer
to decode certain types of bit streams than other types of bits streams.’ The processing
time can even grow unbounded in the worst case sceﬁario, where random noise is
input. A separate mechanism is provided to manage this type of algorithm. In the
preterred embodiment, this is handled by adding two DSP Kernel calls - one 1o find out
how much processing time is alloted (via the GPB Estimate), and the other to
- Getermine how much has already been uéed. It is therefore up to the DSP
programmer to ensure that the dumb-lumpy module does not exceed its allocated

processing time.

How the GPB is Used

When a request is made to install a task in the real-time task list, the DSP
Manager determines whether there is enough processing time available per ﬁ'ame gt
that time. When an application calls the DSP Manager to request the installaticn of 2
task, the current GPB availabls is calculated. The determination is made by
- comparing the estimated processing time for that task to the remaining processing time
available in the frame. The remaining processing time is calculated by subtracting the
GPB Actual or Estimate valu-es for the modules corresponding to tasks already
installed from the total processing time available for that frame. If there is enough

processing time available, the new task will be installed. Otherwise, an error message
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will be sent back to the application or client attempting to do the installation and the
task will not be installed. Optionally, the DSP Manager may request GPB from its
existing clients first, and if any client returns GPB to the system, an error message may

~

be unnecessary.

The determination of whether to use the GPB Actual value or the GPB Estimate
vzlue is described as follows. In the case of smooth algorithms, the UseActualGPB
flag is set in the source code for the module. The initial state of the flag is indicated in
the module data structure. Since the UseActualGPB flag is set, the GPB Actual value

is used as the correct current processing time for the module. However, if the GPB

" Actual value is zero, the GPB Estimate value is used instead in the caiculations. In

ther words, the GPB Estimate value is used until the module has a chance to run zt
lezst once. After that, the GPB Actual value is used, irrespective of \;vhether itis
smaller or farger than the GPB Estimate value. In the currently preferréd embodiment,
the GPB Actual value is updated (peak algoritﬁrn) for 2 module each time that
particular module is executed. In this manner, the GPB .éystem adapt.s. to different CPU

configurations and realtime variations, such as bus loading.

In the case of smant-lumpy algorithms, the UseActualGPB flag is not initia'ny set
becausa the GPB Actual value is meaningless until the maximum processing time
situation is regched. Since the UssActualGPB flag is not yet set, the GPB Estimate
value is used"as the correct current procassing time for this module. Howsver, if the

GPB Actual value is larger than the GPB Estimate, the larger value is used. This

condition occurs whenever a module has not quite reached its worst case but already

has exceeded the estimate. When a smart-lumpy algorithm determines that it has

reached the maximum processing time situaiion,_it makes a call to the DSP Kernel to

The reason why a DelayUseActﬁaIGFB flag is required is becauss if the DSP
Manager happens to interrogate the GPB values between the time the Kernel call is
made by the DSP module and when the latest GPB Actual is calculéted at the exit from

the module, it will retrieve an erroneous GPB Actual value, This is due to the fact that,
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at that instant in time, the GPB Actual Register still contains the previously stored
actual value. The actual value for the current scenario has not yet been updated.
Hence, a DelayUseActual flag is required. Figure 8 illustrates how the
UseActualGPB flag 800 and the DelayUseActual flag 801 are used and set in
refer;ance to the processing of 2 smart-lumpy module. Some length of time after frame
start boundary 803, the processing of a smart-lumpy module begins at time 804.
Processing continues until time 805. The DSP module calls the DSP Kernel to set the
UseActuaiGPB flag 800 at time 806. The call causes the DelayUseActual flag 801 to
be szt. Note that the UseActuzlGFB flag 800 is kept in the off state (not set). A short
time after the module has been prccessed, the GPB Actf:al v;!ue is determined and
stored in the GPB Actual Register at time 807. The DSP Kernel then checks the
DelayUseActuzl flag 801 &t a later time 808. if that flag is set, then the UseActualGFB
flag 800 is set and the DelayUseActual flag 801 is resét to the off state (not set). Thus,
if the DSP Manager happens to interrogate the GPB value in the middle, while the -
module is being processed, the GPB Estimate value will be used rather than an
erroneous GPB Actual value (unless the GPB Actual is already larger than the GPB
Estimate). Once the GPB Actual Register has been properly updated, the GPB Actuzl
value will then be used. This updaied GPB Actual value is used thereafter, and the

value is additionally updated if regquired by the previously described peak algerithm.

An alternate method for handling the flag setting is to require the DSP

programmer to set the UseActue! flag the next frame after the maximum processing
has occured, via the Kernel call. This is functionally correct, but adds programming

. burden to the DSP programmer, and increases the potential for error.

As briefly described earlier, in the case of dumb-lumpy algorithms, the aigorithm
makes two calls to the DSP Kernel. One call fetches the expected processing time for
that module, which is stored in the GPB Estimate Régister. The other call feiches the
amount of prgcessing time which has been used up to that instant. "i'he algorithm
compares these two values. If the algorithm is close to exhausting its allotted time, the

module should execute its processing termination procedure (e.g., aborts for this
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frame). This procedure should end the processing in a manner appropriate for that,
particular module. By repeatedly making the second of these two calls, the aigorithm
is provided with information to determine when it should terminate its execution. Thus,

a dumb-lumpy is required to manzge its alloted processing time itself.

If a dumb-lumpy overruns its allotted time, the GPB Actual will exceed the GPB
Estimate. This is actually a fairly likely situation, in that the programmer can only make
an educated guess at how much time is required to complete the context switch when
exiting his module. As previously described, this larger value will be used when
computing available GPB when another client wishes to install an additicnai task. This
- guarantees that the additionél context switch time is included in future CPB availzkility

_calculations.

Thus, the calculation of remaining processing time proceeds by adding up all of
the current processing requirements of each installed module as described, and
subtracting the total processing from the available frame processing. Note that this
calculation includes both active and inactive tasks. This is necessary so that the

required processing time for inactive tasks is reserved for when they are activated.

Once a task and its related modules have been used for the desired purpose
and the application prepares to quit, the task is unloaded from the task list,

automatically returning its GPB to the system for use by other modules. At this time,
smooth and smar-lumpy algorithms have a more accurate GPB value stored in their

GPB Actual register. This value reflects the real execution time for the current

-~ gnivironment. The application can chqose to updéte?ﬁé module on disk with this new
actual value by storing it in the GPB Estfmate, effectively 'updaiting the estimate. This
operation is performed by the DSP Manager on request from the client. Alternatively,
the DSP Manager may automaticzally do this for the client. However, there are
drawbacks in this approach, such as dealing with locked disk files; updating - _
applications \;vith DSP resources in them which aiters their.“modiﬁcation" dates; or |

multiple users updating a shared DSP resource on a file server.
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In the preferred embodiment, a “preferences” file is maintaineg by the DSP
Manager on that particular systems boot disk. Whenever a task is unloaded, any
improved GPB values in the modules within the task are written to the preferences file.
Whenéver a module is loaded, the preference file is-checked to see it more accurate
information is available, which is used instead. This eliminates the problems

asscciated with file servers and medification dates for applications.

Ncte that the _availabi!ity cf an updated GPB Estimate in the preferences file
indicates that the module has been used previously in thi_s' particular computer sysiem.
This also indicates that the GPB Estimate has beéntadjusted to reflect the performance
of'this computer system, and is therefors significantly more accurate than the GPB
Estimate in the module file. This distinction can be uiilized to reducevf;amé overruns.
In particular, the DSP Manager can add some percentage to the GPB Estimate for 2 | ,
module if nothing is found in the preferences file when comparing the estimate and the
available processing time. This ex‘ra margin can reduce the likelihood of the estimate
being too low for this machine. Aizemaﬁvely, this e'xtra'margin c¢an be added only if the
reamining processing availzable is clese to the required processing as indicated by the
estimate.

Itis this'update mechanism that provides the last step to close the loop in the
system, to make it truly an adaptive system. Note that this process only has meaning
for smooth and smart lumpy modul_es. Dumb lumpy modules are required to limit their

processing to the estimated value themselves. .

| r M !
| The currently preferred embodiment of the present in;/ention utilizes a
component architecture approzach, wherein generic modules for performing generic
functions can be intercoupled to provide different functionalities. An example of this
building block approach is that of 2 telephone answering machine,'as shown in Figure
8. The Telephone Answering task 901 can be implemented by grouping together
standard modules 802-904. Status module 902 provides the status and controls

iunctions such as detecting rings, taking the phone line ofi-hook, nanging up the
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phone, etc. Next, Sub-Band Decoder module 903 is used to provide a player function
for playing a greeting to the caller and for playing back any recorded messages. The

Sub-band Encoder module 804 is used to provide a recorder function.

The Telephone Answering task 801 does not actually uses all of its moduies

902-904 simultaneously. For example, when a message is being played, the recorder
- function is. idle and vice versa. Thus, calculating the GPB values for this task by

adding up the processing times for each module would result in an over-estimation
~ because not all modules will be executed iﬁ the sams fr.;xme._ This would effectively
lock out rezl time processing bancwidth from other tésks, which would ﬁéver actually
be used. Forexample, it the GP3 values for Status module ©02 were 1,000 cycles;
Sub-b,and'Ehcoder module 903 were 5,000 cycles; and Sub-band Decoder module |
804 .were 6,000 cycles; this resuits in a total GPB value of 12,000 cycles. The worst- -
case situation is actually 7,000 cycles (Status module 902 plus Sub-band Decoder
module 804). Thus, Telephone Answering task 901 does not need an aliocation of

12,000 cycles. Rather 7,000 cycles is all that is required.

In order to make more efficient allocation of processing time in this type of
situation, the currently preferred embodiment of the present invention utilizes a

DontCountThisModule flag. When a request is made to determine the processing time
for a particular tiask, the DSP Manager checks each of the task's modules to determine

whether this flag is set. If the DontCountThisModule flag is set for a module, the GPB
. Nalue of that particular module’is not included in the total GPB value for that task. It is
the responsibility of the client installing the task to determine-the worst case utilization
of the moduies and to set the DontCountThisModule flags for the relevant modules.
Hence, in the example given above, the DontCountThisModule flag is set for the Sub-
band Encoder module 203. |

Note that if the programmer incorrectly uses the DontCountThisModule flag, the
GPB used by the task list will be incorrectly calculated too low, allowing the installation
of additionzl tasks when none may be in fact desireable. in this case, a frame overrun
may resuft. One way of correcting this problem is to maintain a GPB Actual register in

the task structure for a task-level check on the processing load. This additional
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measurement allows better error correction and recovery if this mistake was made by a

programmer.

Scaling Vectors

| 'Another aspect of the present invention which enhances modularized DSP
functions in various configurations is the use of scaling vectors. Scaling vectors
enable one module to function in multiple instantiations. 'ln other words, scaling
vectors enable generic modules to adapt to various buffer sizes, sample ratés, and
frame rates. Various GPB values are also implemented to correspbhq 1o the various
instantiations. For example, a module which has a GPB value of 5,000 cycles at a
frame rate of 100 frames per second may require only 2,700 cycles at 200 frames per
second. Instead of having to crezie 2 set of functionally identica} modules for each
possible case, a single module czn be implemented with scaling vectors that allows it

to' be used in all of the desired cases.

When a module is first programmed, the programmer determines the different
ways that the module can conceivably be used and also determines the respective

GPB values for each different implementation. The programmer then enumerates the
possibilities as a list of scaling vectors. The list is stored with the moduie.- When an

application attempts to use the module a certain-way, the loader determines, from the

module's scaling vector list whether that module can be used for that instantiation.

The loader also selects the GPB valus for that instantiation,

. A scaling vector is comprised of three values: a frame rate, a'scale factor, and 2
GPB value. The scale factor is used 1o determine the sizs of scalable /O buffers for.a
particular module. Table 1 below illustrates some possible applications for a. 2-to-4

sample rate converter. .
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" Table 1

100 frames/sec

24 kHz to 12 kHz

200 frames/sec 24 kHz to 12 kHz
100 frames/sec 8 kHz to 4 kHz
200 frames/sec 8 kHz to 4 kHz
100 frames/sec 16 kHz to 8 kHz

260 frames/sec

16 kHz to 8 kHz

100 frames/sec

- 48 kHz to 24 kHz

48 kHz to 24 kHz

200 frames/sec

10.0 frames/sec

32 kHz to 16 kHz

200 frames/séc

32 kHz to 16 kHz

Since this module is a 2-to-1 convarter, the size of the scalable input buffer in the
source code should be set to 2, and the scalable output buffer should be set to 1.

Table 2, shown below, gives the ten corresponding scaling vectors.

- Table 2

-

100, 120, 5000

100 fs,-scate=120 for VO size of
240/120, GPB=5000

200, 60, 2500

200 {/s, scale=60 for /O size of
_120/60, GPB=2500

100, 40, 1686

100f/s, scale=40 for /O size cf
80/40, GPB=1666

200, 20, 833 100 {/s, scale=20 for /O size
40/20, GPB= 833
100, 80, 3333 100 {/s, scale=80 for I/O size of

160/80, GPB=3333

200, 40, 1685

200 f/s, scale=40 for 1/O size of
80/40, GPB=1686

100, 240, 100C0

1_00 {/s, scale=240 for VO size of
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480/240, GPB=10000

200, 120, 5000 200 t/s, scale=120 for VO size of
© 240/120, GPB=5000

100, 160, 6685 100 1/s, scale=160 for VO size of
320/160, GPB=6686

200, 80, 3333 200 {/s, scale=80 for /O size of
160/80, GPB=3333

When an application requests that a module be loaded, a call is made to the
DSP Manager. One of the parameters provided to the DSP Manager in the call is the
scale factor. The DSP's current frame rate is provided automatically. If thereis a
matching scaling \-)ector, the module's scalable I/O Buffers are scaled appropriately,
and the corresponding GPB value is used. Note that a scalable buffer flag is included
in the buffer flags to indicate if scaling is to be performed. For example, if the
200,80,333 vactor is chosen from Table 1, then the /O buffer sizes would be multiplied

by 80, the scale factor. This would maks the input buffer (initiélly size 2) big enough
for 160 samples, and the output baffer (initially size 1) big enough for 80 samples -

perfect for a 2/ sample rate convertor runnin'g' at 200 frames per second and

 processing 32 KHz data. To=e -

If thers is no matching scaling vector, an error is returned. Note that the module
' algorithm reqguires knowledge of the buffer size at run time to determine how much

processing is required. A DSP Kerne! call or macro must be provfded to provide buffer

size information to the module cn request.

Table 2 indicates a simple, linear relationship between buffer size (scale factor)
and GPB. If this wers really the case, only a single value would te needed -- the GPB
per unit of scale factor. In reality, the GPB value consists of a certain amount related to
loading and handling of the module.and its buffers and a processing load that is cfien,

" but not éiways, a linear relationship to the I/O buffer size or scale factor. Since the
GPB valdes are related to the scale factor in a more complei way, each of the GPB

. values in the scaling vectors sheould be initially estimated s shown in Table 2, and
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then more accurately measured in an actual system with some form of profiler tcol.
The GPB Estimate update technique described easiier (i.e. the preference file)

can also be supported with scaling vectors. This is accomplished by the DSP

Manager keeping track of which sczling vector was being used, and updating oniy the

related GPB Estimate.

In an additicnal e_mbodiment, for applications which do not know the details of 2
module but which, nevertheless, wish to use it as a generic building block, a DSP
Manager call is provided to retrieve information concerning the module. The call can
be used to select the desired scale factor. The call returns the available input and
output buffer sizes at the current frame rate, and the scale factors. This list is limited to
scalable 1/O buffers specified by the module programmer. The application must make
a selection based on the required /0 buffer sizes. The associated scale factor is then

passed to the lcader.
Dvnzmic Processing Time

- = The execution of certain programs could téke’a‘lt or a great majority of a frame's
processing time under certain circumstances. Under other circumstances, these same
programs could take substantially less processing time to execute. The currently

preferred embodiment of the present invention dynamically varies ths processmg time

for a particular module, depending upon the availability of the processmg time.

The present invention accomplishes this through the use of the scaling vecters.
When a module is written, the prcgrammer can generate, ﬁot just one, but 2 number of
various GPB values for a given frame rate and scale factor. The different GPB valus
for the same frame rate and scele factor represent different levels or medes by which
that particular module could be exscuted. Thus, when a module desires more
processing time, the application can make a call to the DSP Manager o determine
whether additional time is available. If additional processing time is available, =
specific scaling vector having & larger GPB value can then be selected and used by
that module. Alternatively, the sczaling vector having the largest GPB value which
could be loaded (i.e., fits into the avzilable processmg time) is selected and used by

that module. ' - )
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A similar process is used 1o cive up unneeded’_processing time. Note thatthe
applicaﬁon is responsible for informing the module via Shared M;mory when the GPB
lével is chianged. Likewise, the mocule can request a change of processing by setting
values in Shared Memory for the client fo read (polling mode) or send z message to
the client (interrupt mode). Thereby, a particular module can have different executicn

levels, depending on the availability of processing time.

In the preferred embodiment, 2 mechanism is established between the mocule,
the client, and the DSPlManager to effect these GPB “mode” changes. This
mechanism is comprised of a single 32-bit word in shared memory. The upper 16-bits
is read/write for the ho.st, and contains the desired mode number. The lower 16-biis is
read/write for the DSP, and contzins the current actual mode number. Both

processors may read the entire 32-bit word.

R,

At any given time, the desired mode can be set by the host, assuming the
proper GPB calculations héve been preformed. The DSP Manager can then query the
actuél mode, and handle the mode change when the DSP module f’inally makes the
mode switch. Note that the mede change can be instigated by either the DSP module
(via 2 message to the client) or by the client. in either case, it is the client that actually
makes the DSP Manager calls to effect the change. ltis then the re‘sponsibility of the
DSP module to activate the new mode when it reads the mode chiange in shared

memory, and to indicate when the mode change is complete by storing the new mode

number in the shared memory.

* The mode change is accomplished by the client making a call to the DSP
Manager, specifying the desired mode number. The DSP Manager fetches the GPB
value for this mede from the scaling vector, and determines if it is an increase in GPB
or a decrease. If a decrease is indicated, the new mode number is sat in the shared
memory, and a'deferred task is set up to query the shared memory to detect when the
module has changed modes. The GPB Estimate is chan‘ged 1o reflect the new, lower
value. The GPB Actual is left as is for the morhent. Conti'ol is then returned to the

client. Under the control of the daferred task, the shared memory is checked until the
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module makes the mode change. When this takes plééé, the GPB Actual is saved for
use in updating the preference file later, and is set to zero. This allows the new, lower
GPB Actual value to be computed, using the standard peak algorithm described

previously.

If a GPB increase is determinad from the requested mode change, than an
internal DSP Manager call is made to determine whether enough GPB is available to
handle the increase request. If there is sufficient GPB, the required GPB is taken, and
the GPB Estimate is revised upward, using the value in the new mode's scaling vector.

The GPB Actual is saved for updating the preference file at a later time. Control is then
returned to the client. If there is not.enough GPB available, the DSP Manager can

request GPB from all current clients. If a client-gives up some of its GPB, and the result
is that sufficient GPB is now available, the process completes as described. However,
EZhere is no way to get the needed GPB, then an error is returned to the client. The
current mode is therefore not changed.

Note that the format of the scaling véctors to handle multiple-modes is a-simple
extension of the basic scaling vectors. The vectors can be arranged in any order,
which allows grouping by mode, by frame rate, or by sample rate, depending on the
programmer’'s desire. There are alternate methods for encoding the.modes, which
have some value, but require additional intellegence in the tools. For example, the
scaling vector could be variable size, and contain the frame rate, the scale factor, and
a GPB mede count, followed by that number of GPB values for the difierent modsas.
This gould make it easier for programmers to keep track of modes. Alternatively,
scaling vectors could have four values: a mode number could be included with each

vector. This could potentially prevent some programmer errors.

The following example of 2 medem module illustrates how its processing time
can be dynamically varied, depending on the availability ‘of processing tfme.
Presently, modems can operate over a wide range of difierent speeds -- for exampie,
1200 baud with V.22 to 95C0 baud with V.32 . Furthermore, various other modem

speeds also exist and may be developed in the future. Generally, the faster the
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.~ operating speed, the more processing time is required: In other word's, the modem

’

module requires more processing time to handle a V.32 call versus a V.22 call.
Hence, the modem module can have various GPB values, depending on the desired
operating speed. The different GPB values are reflected in the scaling vectors for the
modem module. Table 3 shows five different GPB values which correspend to five

difierent operating speeds, given a frame rate of 100 frames/second and a sczle factor

of 20. '
- Table3
_Operating Speed Frame Rate Scale Eactor_ GPB Value
V.22 100 20 B 4000
V.22 bis 100 20 4500
‘ V.29 fax 100 20 " 7000
V.32 100 20 ' 9000
V.32 bis 100 20 9500

Supposing that the modem module is initially set up with a minimum
requirement to operate on V.22 (GPB of 4000 cycles). When the phone rings, the
modem moduleArequests additional processing time in case the incoming callis V.32
bis (GPB of 9500 cycles). It does this by sending a message to the modem client. The
ciient requests the mode change by calling the DSP Manager. The DSP Manager
looks up the new mode’s vector, and determines that an additional 5500 GP8 cycles
are required —to switch 1o that mode. It then determines whether the extra 5500 cycles
are available. If the additional processing time is available, the modem module is
notified via shared memory and impléments the scaling vector corresponding to V.32
bis: 100,20,9500. The DSP Manzager takes care of the GRB Estimates and GPB
Actual values, as described earlier. |

The moderm module now has a GPB value of 9500 rather than 4000. The
phone is answered. if the incoming.call happens to be V.32 bis, the modem module
has enough processing time to handie the call. However, if the incoming call happens .,
tc be V.22 bis, the modem module falls back to a GPB value of 4500 by implementing
the V.22 bis scaliné vector: 100, 20, 4500. This is done by sending a message to the
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modem client, which then requests the GPB changs from the DSP Manager. Ater the
incoming call has been completed, the modem mcdule relinquishes the extra A

processing time using the same mechanism by revemng to the V.22 scaling vector

100, 20, 4000.
Note that in this example, if insufficient GPB is available to shift above V.22, the

modem answers the phone as a V.22 modem, forcing any higher speed calling
medem to fall back to V.22, This process allows dy'naffﬁc allocation of DSP resources,

depending on the load at any given time from user demands.

An alternative embediment is to implement scaling vectors for calculating a
more accurate initial GPB Estimate value for a moduls. This results in a more accurate
initial GPB Estimate value. First, the Host Driver provides the hardware )
implementation data on transfer times (measured in nanose&onds) required for
different types of memory references. The access time is the average real-time
duration from the time a data request is made to the time the data is actually received®
and the transaction is terminated. Bus and memory performance is accounted for in
the transfer time. Next, the number of memory accesses for each type of memory
reference for the module is determined. This can be determined by one of three

difierent methods. One method is for the programmer to compute these numbers.

In an second method, the development hardware cén actually count the number
of times that-each type- of memory reference is accessed by the module for a frame. In
yet a third method, the time to perform one particular type of memory reference can be
slowed. The total time required to process the entlre moedule with one type of memary
reference siowed is measured. The regular time (not slowed) for processing the entire
module is subtracted. Ths resulting time differential is then divided by the difference
between the access time for one slowed access and one regular access for that .
particular type of memory reference. The result yields the number of accesses for that
pariicular type of memory reference for that module. This method is repeated for ezch

difierent type of memory reference.

-Once the numbers are known, the total time for each type of memory reference



'_4.,,.

5,448,735
83 84

for the module can be calculated by multiplying the nuraber of memory transfers of that
particular type by the time required to perform that particular type of memory transfer.

Afterwards, the estimated processing time for the entire module is determined by
acding together the times for each type of memory reference. This estimated

processing time is then converted into @ GPB value by dividing it with a real-time/GPB

- ratio. =T

Table 4 below illustrates an example of deriving a GPB Estimate value basad

on this type of scaling vector.

[2ble 4

Memory Access Count (Ni) | Typs of Memory Reference | Access Time (ns)

N1 = 10,000 Cache Memory 72
No = 205 Local Memory - Single 200
N3 =117 Local Memory - Page or 150

Block Transfer
Ng = 82 System Memory - Single | 1200
N5 = 41 System Memory - Page or | - 1000
Block Transfer

-

Given a computer system having five different types of memory references, the
average access time for each type of memory reference is determined. Note that other
types of computer systems .ca'n inciude additional types of memory references. Fcra
particular module, the number of times that module performs that type of memory
reference is calculated (memory access count N 1-5). The scaling veétor now
comprises seven numbers: the frame rate, the scaling factor, and N1-5. The total time '
for processing the module can be calculated based on the scaling vector as follows:
(10,000 « 72) + (205 » 200) + (117 » 150) + (82 « 1200) + (41 » 1000) = 917,950. Given
a real-time/GPB ratio of 72, the GPB Estimate value for this particular module is

12,745. Note that the ratio used is the counting rate of the timer, and usually equals

the time of N1 counts.



|
5'!!‘

5,448,735 .
85 \ 86

One negative aspect of thisalternative embodiment is that even though the GPB

Estimate value is initially more accurate, it ca‘nnot subsequently be updated based on

- _GPB Actual values. In other words, there is no feedback mechanism to close the loop.

- Thus, this alternative provides a more accurate initial estimate but cannot adapt to

additional changes introduced into the system by the user, such as expansion cards,

etc. The preferred embodiment ultimately results in 2 more accurate estimate.

Anocther aiternative embodiment involves calculating the GPB value %or- a
particular module based on the following equation: GPB = mx + b, where "m"
corresponds to the incremental amount of time for each additional sample to be
processed, “x” is the number of samples, and "b" corresponds to the overhead timé‘
such as caching, context switching, and program set up times. For a more accurzate
GPB value, this alternative embodiment can also incorporate the scaling vector
concept described in the previous glternative embodiment. That is, different "m" and
"b" values are used corresponding to the different types of memory references. Since
the scaling vector contains the number of accesses for each type of memory reference,
the total GPB value for the module is the sum of the GPB values for each type of
memory reference (zs calculated according to the formula given above: GPB = mx +
b). However, this‘alternaﬁve embodiment is limited o medules having a reiaﬁ\}ely

linear processing load with respect to the number of samples which are processed.

Timeghare
In addition to processing tasks in real-time, the currently preferred embodiment »
of the present invention processes tasks on a timeshars basis. Real-time tasks are

those tasks which are executed a! regular intervals (i.e. each frame). In contrast,

timeshare tasks need not be executed every frame. Some examples of tasks which

can be processed on a timeshare basis include compression of disk files, graphics,

- ahimation, videoc decompression, eic.

Timeshare tasks are processed at the end of frames which have'proc'essing

time left over, after all of its real-time tasks have already been processed. The amount
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of processing time available for timeshare in a particular frame depencs on how many

real-time tasks are being processed and their re§peétive processing times. If the real-

" Tfime tasks consume all the processing time of a frar—ne, no timeshare tasks can be

processed in that frame. On the other hand, if no real-time tasks or minimal real-time
tasks are being processed during a particular frame, thers would be a great dazal of

-

processing time for timeshare tasks during that frame.

Before a task is to be processed on a timeshare basis, it should first be
determined whether that task can properly be serviced on a timesh::;re basis, due to
the fact that the total timeshare available varies from frame to frams. The DSP Ke(nei
knows how much processing time is available per frams, since it is computing the éPE
Actuals for all of the realtime tasks. The average total remaining (unused) realtime
available for use by timeshare mzay be computed as follows: for each frame, recompute
the a'verage time remaining after all real-time tasks have completed. A form of moving

averege calculation is utilized, such as:

Average timeshare = pravicus average vzalue - 0.9 +

current freme value - 0.1.

- This gives each new frame's remazining time 'a 10% weight, against a weight cf 0% on

the previcus average. Alternate averaging techniques can be used. Also, it is

possible for the 'DSP'Managert'o do this calculation by sampling the value every n

» frames. While this may not be as eccurate, it simplifies the Kernel.

Since there may be a substantial context switching overhead when switching
between realtime and timeshare and vise versa, this amount should be subtracted out
to give a more accurate value of real processing available. This value should be
provided by the Host Driver to the DSP Manager. Note that the context switch
overhead is the minimum amcunt of time that must be available before any timeshare
tasks can be installed. Normally, if no timeshare tasks are installed, ali of the available
frame time can be allocated by reeltime tasks. If there is still the minimum time

available, a timeshare task may beinstalled, otherwise an error will be returned. Once

-
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there are tasks in timeshare, the realtime allocation can never exceed the total time

. minus the minimum required context switch time. IrFefféi:t:instal!ing the first timeshare

task allocates some of the processing bandwidth for timeshare context switch. if all
timeshare tasks are removed, this time can be allocated to realtime tasks.

In addition to the average available timeshare processing, the frequency of the
timeshare task list execution is required. If there are many tasks in the timeshare task
fist, execution frequency for each task will be low. A measlxre of this can be computed
by calculating 2 moving average of the number of frames i’equired 1o completely
process the timeshare list once. This must be done each time through the timeshare

task list. The calculation could be done as follows:
frames used = ending frame number - starting frame number

Average frames used = previous average frames used * 0.9 +

current frames used* 0.1

Note that it is possible to have a "frarhes used” value of zero for cases where few
timeshare tasks are active or installed, or where most of the proceésing time is
available for timeshare_. This will result in an average frames used value 6f less thén
1.0. Other averagirig methods may be used. The average frames used value could
alternately be computed by the DSP Manéger by samplin'g' the realtime and timeshare
frame numbers on a reguler basis. This will be less accurate, but réduces the Kernel ,

cemplexity.

By using the average frames used and the average available timeshare
processing per frame, the frequency in which a new timeshare task will be executed

can be computed as foliows:

current timeshare load = Average timeshare «

- Average frames used
prcposed timeshare lcad - = current timeshare load +

-

GPB E;timate of task

— == -
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computed frames used = proposed timeshare load/Average timeshare

-

If the calculated "proposed” frames used is 00 high (infrequent) for the desirad
function, the task should not be installed in the tim.eshare list. Note that a timeéshare
client must monitor the processing rate of its timeshare tasks because change in the
real-time load or in the timeshare task list affects the amount of processing its
timeshare task receives. This process can be assisted by notifying<e timeshare client
whenever a new real-time task is added to the task list. Another technigue for  ~
monitoring timeshare processing rate is for the client to request the timeshare frame
number from the DSP Manager. The number is incremented once for each pass
through the timeshare task list. Another aid to timeshare management is to provide the
unallocated GPB value per frame in addition to the average timeshare value described
above. Since GPB can be allccated and not used, the unallocated GPB is typically
smaller than the typical average actu‘aliy available GPB. This number is used {o give a

"worst case" computed frame rate as follows:
current timeshzare load = Ayerage timeshdre «
Average timeshare _frarhes used
proposed ﬁmeshare load ;current timeshare load +
GPB Estimate of task
computed worst case frames used = proposed timeshare load /

unallocated GPB

The computation gives the frames used for timeshare execution, assuming all real-

time tasks are using their allotted GPB.
wnen timeshare tasks are executing, it is necessary to pre-empt execution for

reai-time tasks which must be processed "on-*:ifne." This is accomplished in the

. currently preterred embodiment by interrupting timeshars -execution to run reak-time.

In such a case, the context of the timeshare task is saved and then restored after rezl-

time has completed.
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If the context save and restore process takes a significant tinie to complete ke.g.,
saving the cache and reloading the cachs in a caché-based processing syétem), this
time should be taken into consideration when allocating rea-time. This is the same
overhead subtracted out from available timeshare processing, as déscribed earlier. In
particular, when the real-time task list completes, a check is made of the timerto  *
determine whether there is encugh time to restors and save the timeshare process
before the end of the frame. If there is not enough time, timeshare processing is not
restored for this frame. Thus, in & heavily loaded system, timeshare execution can

drop to zero.

An example of an alternative technique for managing timeshare is to run
timeshare modules only if the rerhaining processing time available in a given frame
exceeds the required process?ng for the module (GPB Estimate and/or GP3 Actual). In
such a casse, the timeshare module should complete execution pricr to the end of the
frame. Thus, no timeshafe medule should "straddle” a frame boundary. !f this is done,
the GPB Actual value is significant as in realtime. This technique eliminates context
save/restore overhead but requires more processing for the executive function in the |
DSP Kernel. Also, error recovery capability must be prbvided, in case a timeshare
module fails to complete execution prior to thé frame boundary. Note that this
technique requires that all medules run within 2 frame, which could make
programming more difficult for long tasks ‘(i.e., the programmer manually breaks up
execution in chunks, rather than relying on the context switch process doing it

automatical!y)‘. :
Thus, in a computer system having a digital signal processor for processing

real-time tasks in a frame based system, an apparatus and method for ensuring that

© the task is executable within the frame such that the frame’s total processing time is not

exceeded if the task is processed within that frame, is disclosed.

CLAIMS . .
What is claimed is: _ .
1. Inacomputer system having a digitaLsignal processor for processing a

task in real-time on a frame basis, a method for determining whether said task is

executable within a particular frame such that a total processing time corresponding to
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said particular frame is not exceeded if said task is processad within said particular
frame, comprising the steps of: .

determining a processing time for said task;

celeulating a time for executing a task list specifyirig at least one task to be
processed during said frame; ' -

calculating an amount of proéessing time available in said frame by subtragting
said iask list execution time from said frame's total processing time;

installing said task in said task list if said available processing time is at least as
great as said task processing time, otherwise generating a signal indicating the task

cannot be installed.

2. The method of Claim 1 wherein said task list execution time is

determined by adding tocgether processing times for each installed task in said task list.

3. The method of Claim 2 wherein each task is comprised of at least one
mcdule.
4. The methcd of Claim 3 wherein said processing time for an installed task

is calculated by determining a worst-case utilization of said modules corresponding to
said task and adding together each module's processing times for said worsi-case

utilization.

5. The method of Claim 4 wherein said module's processing time is
calculated in reference to said module's type of algorithm, wherein:
it said module comprises a smooth algorithm, said module's processing time is

an estimated processing time if an actual processing time has not been measured for
said module, otherwise said module's processjng time is comprised of the actuzal-

processing time;

if said moduls comprises a smart-lumpy algorithm, said module's processing
time is comprised of the larg_er of said estimated processing time and actual
processing time if said task's worst-case processing time situation has not yet

occurred, otherwise said module’s processing time is said actual p(écessing time;.
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if said module comprises a dumb-lumpy algorithm, said module’s processing
time is the larger of said estimated processing time or actual processing time for said

module.

6. The method of Claim 5 wherein said actual processing time for szid

module is measured by a timer.

7. The methed of Claim 6 wherein said module's actual processing time

measured by szid timer includes related system activities.

8. The method of Claim 7 wherein said module’s processing time measured

by said timer is measured in reference to said signal processer instruction cycles.

S. The method of Claim 8 wherein if said-module is processed in a
subsequent frame, a comparison is made betwesn said prior actual pfocessing time
and said subsequent actual prccessing time for said module, said actual processing

time for said module is updated with the larger of these two values. '

10.  The method of Claim S wherein a piurality of scaling vectors
corresponding to said active module are implemented, enabling said active module to

tuncticn in diifferent instantiztions.

11. The method of Claim 10 wherein said scaling vectors include a frame

rate, scale factor, and a processing bandwidth value.

12.  The method of Claim 11 further comprising the step of implementing one
or more scaling vectors corresponding to said mpdule for calculating said processing
" Time for said module, said scaling vectors including ;:f}am; rate, a scaling factor, and
at least one memory access count(s) corresponding to at least one type of memory

reference.

13.  The method of Claim 11 further comprising the step of implementing one

or more scaling vectors correspending to said module for calculating said processing



5,448,735
99

LI

100
time for said module, wherein said processing time for said module is determined

according to the formula mx + b, wherein m corresponds to an incremental amount of

t
AN

time for processing an input sample, b corresponds to overhead time for said computer
system, and x corresponds to a number of samples to process, wherein said scaling

vectors include a frame raie, & scaling factor, and values of m and b.

14.  The method of Claim 11 whersin a processing allocation of szid active

module is varied dynamiczlly, depending on said availability of processing time within
said frame.

15.  The methcd of Claim 14 further comprising'the step of updating szid

actual processing time when said task is unloaded and storing said updated
processing time in a storage means.

16:  The method cf Claim 15, wherein said updated processing time is
retrieved and utilized in czlculating said execution time of said task list.

17.  Ina computer system wherein tasks are processed in rezl-time on a

frame basis, an apparatus for ensuring that a task can be completely processed within
a frame such that said frame's available processing time is not exceeded, comprising:

a task list for specifying tasks to be processed during said frame:

a digital signal processor coupled to said computer system for executing said
task list;

an operating system coupled to said computer system which determines an

aveilable processing time for said frame by subtracting an execution time for executing

" safd task list from a total processing time of said frarr’?é,'whérein if said available

.

processing time is at least as large as said processing time for said task, said task is

included in said task list, othérwise said task is not included in said task list.

-

R L

18.  The apparatus of Claim 17 further comprises a scaling vecter for

calculating said task processing time, said scaling vector including a frame rate, a

of memory reference.

scale factor, and at least one memory access count corresponding to at least one type
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19.  The apparatus of Claim 17 further comprises a scaling vector for
celculating said task processing time, said scaling vector including a frame rate, a
sczle factor, and values m and b, wherein said task processing time is determined
according to the formula mx + b, wherein m corresponds to an incremental amount of
time for processing an input sample, b corresponds to overhead time for said computer
System, and x corresponds o a number cf samples to process. |

20.  The apparatus of Claim 17 further comprising a first flag corresponding to
'each tésk in szid task fist, wherein the state of said first flag determines whather said
corresponding task is active, wherein active tasks in said task list are processed during

said frame when said task list is executed.

21. The apparatus of Claim 20 wherein said task list execution time is
determined by adding together all processing times for each task which is installed in

said task list.

22.  The apparatus of Claim 21 wherein each task is further comprised of at

least one module.
- 23.  The apparztus of Clairn 22 further comprising a second flag associated

with said module, the state of said second flag determining whether said module's

- precessing time is to be included in calculating séidiésk's’processing time, wherein

said task’s processing time is the sum of the total processing times for each module as

determined by said second flag.

24. The apparatus of Claim 23 further comprising:

a first register associated with said module for storing said module's actually

measured processing time;
a second register associated with said module for storing an estimated .

processing time for said module;
a third flag which determines whether said first register value represents the

worst case of said module’s processing time, wherein the state of said flags depends

upon said module's zlgorithm.
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25. The apperatus of Claim 24 whergin said-module’s algerithm includes
one of three types: smcoth, sman-lumpy, and dumb-lumpy.
26. The apparaius of Claim 25 further comprising a timer for determining said

module's actual processing time including any related system activities.

27. ° The apparatus of Claim 26 wherein said timer determines said module's

actual processing time in reference of an instruction cycle.

’

28. The apparaius of Claim 27 wherein each time said module is processed,
said timer measures an actual processing time for said module, said first registeris
updated with said measured processing time if said measured processing time is
larger than said first register's current value, otherwise. said first register is not updated.

 28. The apparatus of Claim 28 further comprising a plurality of scaling

vectors associated with said module, enabling said module to perform its function in a

. .- plurality of instantiations. B

30. The apparatus of Claim 22 wherein said scaling vectors include a frame

rate, scale factor, and processing value.

31. The appareatus of Claim 30, wherein said estimated processing time of

said module is derived from said scaling vector.

32.  The apparatus of Claim 30 wherein said module's processing allocatizn

is varied dynamically, depending on said availzbility of processing time within said

frame.

33.  The apparatus of Claim 32 further comprising a storage means for storing

updated processing times.

34.  The épparatus of Clairr 33 further comprises a means for calculating said
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execution time of said task list based on said updated processing times in said storage -

. 'h . e‘,' 'l‘.“

. ‘means.

35. In a frame-based computer system having a digital signal prccesscr for
processing a task on a timeshare basis, 2 method for determining whether said task .
.can properly be serviced cn said timeshare basis, comprising the steps of: |
determining a processing time for szid task, said task comprising at least one
module, said processing time for said task is calculated by determining a worst-case
utilization of said task's mcdules and adding together each module's processing times
corresponding to said worsi-case situation;
| determining an amount of processing time which is available for timeshare
processing per frame,

determining the frequency that timeshare tasks are currently being executed,
cmputing frequency of execution of timeshare tasks with said task also

instalied; and

. .- . comparing said processing frequency for said=task with required task frequency.

Ina computer systern havmg a drgrtal srgnal processor for. p'ocessmg tasks in

N reai-txme wnthm a senes of frames;

there rs enough processnng trm ' fﬁe te.sk‘euc'h

that the frame's total processmg txme is not exceeded _ 1rst the task s' processing time

‘ requu’ement is determined. The time for executmg the current task list is then
calculated. Next, the remaining amount of processing time available in the frame is
determined. This is accomplished by subtractrng the current task hst executron time
from the frame’s total processmg time. The new task is rnstalled m the task list if the

. frame’s avarlable processing time is at least as great as the task's requrred processing

A

time. Otherwise, the task is not installed in the task list and an error indication is

generated.

IN o
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What is claimed is:

1. A computer-implemented method of executing a
first task, said first task including a plurality of subtasks,
the method comprising the steps of:

A) identifying a first task record,

wherein the first task record has an identifier that
identifies said first task,

65

wherein the first task record is linked to a first

module record of a plurality of
module records,

wherein the plurality of module records are sequen-
tially linked to each other in a list that begins with
said first module record and ends with a last mod-

ule record,
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wherein each module record of said plurality of
module records is linked to a corresponding
code module of a plurality of code modules,

wherein each code module of said plurality of code
modules contains a set of executable functions
which implement a subtask of said plurality of
subtasks;
B) establishing said first module record as a current
module record by following a link from said first
task record to said first module record;
C) identifying a current code module of said plurality
of code modules that corresponds to said current
module record by following a link from said cur-
rent module record;
D) executing said set of executable functions con-
tained in the current code module; and
E) if said current module record is not said last mod-
ule record, then
E1) established a next module record of said plu-
rality of module records as said current module
record by following a link from said current
module record, and

E2) repeating steps C) through E).

2. The method of claim 1 wherein said current mod-
ule record includes a skipcount field for storing a skip-
count value, wherein the step of E1) establishing a next
module record as said current module record includes
the step of skipping a number of module records in said
list based on said skipcount value.

3. The method of claim 2 further comprising the step
of terminating said first task if said skipcount value is
equal to a predetermined value.

4. The method of claim 2 wherein performance of
said step of D) executing said set of executable functions
contained in the current code module changes said
skipcount value.

5. The method of claim 1 wherein:

resources are required to perform said step of D)
executing said set of executable functions con-
tained in the current code module;

the current module record is linked by one or more
links to the resources required to perform said step
of D) executing said set of executable functions
contained in the current code module; and

the method further includes the step of following said
one or more links from the current module record
to said resources.

6. The method of claim 5 wherein the step of follow-
ing said one or more links from the current module
record to said resources includes following a link from
the current module record to buffers required to per-
form said step of D) executing said set of executable
functions contained in the current code module.

7. The method of claim 5 wherein the step of follow-
ing said one or more links from the current module
record to said resources includes following a link from
the current module record to variables required to per-
form said step of D) executing said set of executable
functions contained in the current code module.

8. The method of claim 5 wherein the step of follow-
ing said one or more links from the current module
record to said resources includes following a link from
the current module record to tables required to perform
said step of D) executing said set of executable functions
contained in the current code module.

9. The method of claim 5§ wherein the step of follow-
ing said one or more links from the current module
record to said resources includes following a link from
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the current module record to primary and secondary
containers required to perform said step of D) executing
said set of executable functions contained in the current
code module.

10. The method of claim 5 wherein the step of follow-
ing said one or more links from the current module
record to said resources includes following a link from
the current module record to buffer interconnections
between the current module record and a next module
record of said plurality of module records.

11. The method of claim 10 wherein the method
includes the steps of:

a) loading a context associated with said set of execut-
able functions contained in the current code mod-
ule prior to executing said set of executable func-
tions contained in the current code module; and

b) saving said context after executing said set of exe-
cutable functions contained in the current code
module.

12. The method of claim 1 further including the step
of linking each given module record of said plurality of
module records to resources required by the set of exe-
cutable functions contained in the corresponding code
module of said given module record.

13. The method of claim 12 wherein the step of link-
ing each given module record of said plurality of mod-
ule records to resources required by the set of execut-
able functions contained in the corresponding code
module of said given module record includes the step of
linking each given module record of said plurality of
module records to buffer interconnections between a
previous subtask of said plurality of subtasks and a next
subtask of said plurality of subtasks.

14. The method of claim 1 wherein said first task
record includes a link to a second task record associated
with a second task, wherein the method includes the
steps of:

after execution of said first task
following said link from said first task record to

said second task record, and executing said sec-
ond task.

15. The method of claim 1 wherein said first module
record includes buffer interconnections with a second
module record and said second module record includes
buffer interconnections with said first module record.

16. A method for constructing within a computer
system a structure for a task that includes a plurality of
subtasks, the method comprising the steps of:

A) constructing a plurality of module records by
performing the following steps for each given sub-
task of said plurality of subtasks
Al) identifying executable code which implements

said given subtask;

A2) constructing a code module section that points
to said executable code;

A3) identifying resources required to execute said
executable code;

A4) constructing a plurality of additional module
sections that point to said resources required to
execute said executable code;

AS5) constructing a module record for said given
subtask, wherein said module record includes
said module section and said plurality of addi-
tional module sections;

B) linking said plurality of module records to form a
linked list of module records, said linked list of
module records beginning with a first module re-
cord and ending with a last module record;
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C) constructing a task record, said task record includ-
ing an identifier that identifies said task;

D) linking said task record to said first module record
in said linked list of module records.

17. The method of claim 16 wherein the step of A4)
constructing a module record for said given subtask
includes the steps of:

creating a module header;

storing a first value in said module header to indicate
how many module sections are in said module
record;

storing a second value in said module header to indi-
cate which module section within said

module record is said code module section;

storing said module header in said module record;

storing said code module section in said module re-
cord; and

storing said plurality of additional module sections in
said module record.

18. A method for constructing a task list within a
computer system, wherein the task list includes a plural-
ity of task structures corresponding to a plurality of
tasks, wherein each task of said plurality of tasks in-
cludes one or more subtasks, the method comprising the
steps of:

A) constructing said plurality of task structures by
performing the following steps for each given task
of said plurality of tasks
A1) constructing one or more module records by

performing the following steps for each given
subtask of said one or more subtasks
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a) identifying executable code which implements
said given subtask;

b) constructing a code module section that points
to said executable code;

c) identifying resources required to execute said
executable code;

d) constructing a plurality of additional module
sections that point to said resources required
to execute said executable code;

€) constructing a module record for said given
subtask, wherein said module record includes
said module section and said plurality of addi-
tional module sections;

A2) if said one or more module records include
more than one module record, then linking said
one or more module records to form a linked list
of module records, said linked list of module
records beginning with a first module record and
ending with a last module record;

A3) constructing a task record, said task record
including an identifier that identifies said given
task;

A4) if said one or more module records include
more than one module record, then linking said
task record to said first module record in said
linked list of module records;

AS5) if said one or more module records include a.
single module record, then linking said task re-
cord to said single module record; and

B) linking said plurality of task structures to form said
task list.

* k ok ok %



