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PHASE REGISTER FOR
SYNCHRONIZATION OF MULTIPLE
SIGNAL PROCESSORS

This is a continuation of application no. 07/882,460, filed
May 12, 1992, now abandoned.

FIELD OF THE INVENTION

The present invention relates to the field of digital signal
processing on a digital computer. More particularly, the
present invention pertains to implementing a phase register
to synchronize the frames and data streams of multiple
signal processors.

BACKGROUND OF THE INVENTION

Time correlated data such as sounds, images, speech, etc.
are by their nature analog (i.e. continuous). However, com-
puters are, for the most part, digital (i.e. discrete). In order
for a digital computer to process analog signals, the analog
signals are first converted into digital signals which repre-
sent the analog signals. This is accomplished by repeatedly
sampling the analog signals in short time intervals and
converting each sampled value into a digital value. The
resulting digital signal is then processed by the digital
computer. The processing of such digitized signals by a
computer is known as digital signal processing.

For real-time digital signal processing, the computer
accepts and processes incoming samples at the average rate
that the samples are being generated by an input process, and
produce outgoing signals at the average consumption rate of
an output process. One method for accomplishing this is to
wait for an input sample. Once the sample is received, it is
processed and then outputted. In other words, single samples
are processed one at a time.

A more efficient digital signal processing method involves
buffering input samples so that processing can be effected on
groups of samples rather than just individual samples. Such
an approach is known as frame-based processing. FIG. 1 is
a diagram of frame-based processing. The basic idea behind
frame-based processing is to slice time into short periods,
known as frames, within which all the required data pro-
cessing for that frame is completed. Digitized signals are
divided into groups which represent the same amount of
time as a frame. For example, Compact Disc audio data runs
at a rate of 44, 100 samples per second. Given a frame rate
of 10 milliseconds (100 frames per second), there would be
441 samples per frame. During each frame, the required
program code executes on the collected input samples, and
the resulting out-put data is dumped into an out-put buffer.
FIG. 2 shows an example of frame buffering.

Thereby, frame-based processing reduces the task switch-
ing overhead when multiple tasks are being run. For
example, given four tasks and a rate of 100 samples per
frame, frame-based processing allows for switching between
the tasks four times rather than 400 times per frame. The
drawback of frame-based processing is increased latency.
For sample-at-a-time processing, one sample delay between
input and output is incurred. For flame-based processing, the
latency increases to two frames. For applications where this
is not an issue, frame-based processing is advantageous.

The throughput of the frame-based processing system can
be increased by adding additional slave processors for
processing in parallel with the master processor. However,
the frames of the additional processors should be synchro-
nized with respect to each other along with the frames of the
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master processors. The reason why synchronization is
important is so that data can be streamed between the
multiple processors. If the frames of several processors are
based on different clock sources, they will drift relative to
each other over a period of time.

FIGS. 3a and 3b show synchronized and unsynchronized
frames, respectively. Passing frames of data between two
processors having unsynchronized frames results in periodi-
cally having one too many frames or not having an available
frame when one is needed. An extra frame contains extra
data and must be dropped, while a missing frame requires
replication. Unless some other action is taken, a disruption
will result in audio or telecommunication applications. Also,
unacceptable data loss will result for data communication
applications. Thus, in order to effectively pass frames of data
between different processors, the frames on the multiple
processors should be synchronized.

One prior art method for synchronizing the frames is to
hardwire a common clock to all the processors. Thereby, the
frames of each processor are being processed at the same
time in reference to the common clock. A disadvantage to
this synchronization method is that running additional wires
to make the clock connections may cause serious electro-
magnetic interference (EMI) problems. Another disadvan-
tage is that it is difficult to expand such a system (i.e. add
more processors) because the common clock must be bused
to any additional processors. Yet, another disadvantage is
that the additional clock wires take up room on a printed
circuit board. If there is no common clock or frame syn-

- chronization signal between processors in hardware, accu-
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rate crystals must be used as clock sources for each proces-
SOr.

However, these clocks are not precise enough to achieve
processor frame synchronization. Typical crystal clock tol-
erances will allow frames to be synchronous to within
+0.01%. While +0.01% seems to be very precise, this small
imprecision is, nevertheless, unacceptable. For example, the
number of frame for a 100% error is calculated by dividing
the frame time by the frame time error. Assuming a 10
millisecond frame time (i.e. 100 frames per second) and
assuming that both crystal clocks are at the extreme opposite
ends of their tolerances, the number of frames for a 100%
error would be:

10 ms/(2x0.01% of 10 ms)=10 ms/2 us=5000

According to the above calculations, a £0.01% crystal clock
tolerance results in totally unsynchronized frames every
5000 frames, in a worst case situation. At 100 frames per
second, a full frame with either be dropped or an extra frame
will be generated every 50 seconds.

Another problem with real-time frame-based processing
between digital signal processors is that of synchronizing
I/0O data streams with the frames. Even though the frames of
the slave processors are synchronous with the frames of a
master processor, this does not guarantee that the input and
output data streams being processed are synchronized with
the frames.

Therefore, what is needed is an apparatus and method for
synchronizing the frames of slave processors with the
frames of a master processor, which can also be used to
effectively synchronize input and output data streams with
the frames.

SUMMARY AND OBIJECTS OF THE
INVENTION

In view of the problems associated with synchronizing the
frames of additional processors with each other and with the
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frames of the master processor, one object of the present
invention is to provide a very precise dynamic synchroni-
zation method.

Another object of the present invention is to implement a
synchronization method with minimal electro-magnetic
interference problems.

Another object of the present invention is to provide a
synchronization method which allows the computer system
to easily expand by adding additional processors.

Another object of the present invention is to provide a
software synchronization mechanism which is not time
critical.

Yet another object of the present invention is to synchro-
nize input and output data streams with the frames.

In a frame-based computer system having a master pro-
cessor and a slave processor, the present invention provides
an apparatus and method for synchronizing the slave frames
with the master frames and for synchronizing I/O data
streams with-the frames. A phase register is loaded with a
value of 0 when the mth frame boundary occurs. The phase
register value is then incremented at a frequency which is
greater than the I/O sampling rate. This process is repeated
for successive frames such that the phase register value
describes an increasing ramp function over time. Each ramp
corresponds to m frames. In the currently preferred embodi-
ment, a dual buffer system is implemented (m=2). Following
system start-up, the present invention generates a transition
frame for the slave processor to achieve initial synchroni-
zation. The length of the transition frame depends on the
current value in the phase register.

Once the slave frames have been initially synchronized
with the master frame, the present invention provides a
method which continually adjusts synchronization of the
slave frames. This is accomplished by reading the phase
register during the slave frame. A timer/counter value local
to the slave processor is also read. Based on the phase
register value and the timer value, calculations can deter-
mine what the phase register value was at a master frame’s
boundary. If the calculated phase register value is relatively
high, a successive slave frame is made longer. If the value
computed is relatively low, a successive slave frame is made
shorter. The present invention also accounts for system
delays such as program delays, bus delays, and timer delays.

Note that while the +0.01% crystal error causes synchro-
nization problems over time, the frequencies are precise
enough over short periods, such as over the period of a single
frame, to be used to maintain long-term synchronization.

Furthermore, the present invention also provides for data
synchronization of two separate I/O channels coupled to the
master and slave processors. First, the slave phase register
value at a slave frame’s boundary is calculated based on the
current value read from the slave processor’s phase register
and the slave processor’s timer. Next, this calculated phase
register value is converted to a buffer address by shifting out
the prescaler bits and adding the base address. Extra or
missing data samples are determined by noting any subse-
quent changes to the buffer address. A sample rate converter
is implemented to provide data recalibration, as necessary.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of frame-based processing.
FIG. 2 illustrates an example of frame buffering.

FIGS. 3a-b illustrate synchronized and unsynchronized
frames, respectively.
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FIG. 4 illustrates a processing system upon which the
preferred embodiment of the present invention can be prac-
ticed.

FIG. 5 illustrates a dual-buffer frame-based processing
system.

FIG. 6 illustrates a phase register.

FIG. 7 is a block diagram which illustrates how the phase
register can be incorporated into a DMA controller to move
data samples to and from memory for an I/O device.

FIG. 8 is a flowchart illustrating the steps for generating
the values to be stored in the phase register.

FIGS. 9a-b respectively illustrate phase register values
and converted phase register values in reference to a number
of frames as a function of time.

FIG. 10 illustrates a transition frame which establishes
initial synchronization following start-up.

FIG. 114 is a graph illustrating sampled values for a lead
condition.

FIG. 115 is a graph illustrating sampled values for a lag
condition.

FIG. 12 is a timeline which illustrates various delays.
FIG. 13 illustrates an input buffering mechanism.

FIG. 14 illustrates an output buffering mechanism.
FIG. 15 illustrates a data resynchronization mechanism.

DETAILED DESCRIPTION

A method and apparatus for synchronizing the frames of
one or more slave processors to the frames of a master
processor and synchronizing input/output data samples by
implementing a phase register is described. In the following
description, for the purposes of explanation, numerous spe-
cific details such as register and buffer sizes, frequencies,
frame lengths, timer values, etc. are set forth in order to
provide a thorough understanding of the present invention.
In particular, this description discloses some specific imple-
mentation details, such as down counters and up counters
which either underflow or overflow. It should be noted that
the present invention can be implemented by substituting
down counters with up counters and vice versa. Likewise,
counters that use comparators rather than binary borrow/
carry registers can be implemented. It will be apparent,
however, to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

Referring to FIG. 4, the processing system upon which the
preferred embodiment of the present invention may be
practiced is shown as 400. Apparatus 400 comprises two
processing units 401 and 402, host 460, and a bus 450
coupling the processing units and the host. Processing units
401 and 402 are comprised of similar hardware. Either of
these two processing units 401 and 402 can be made as the
master processor with the other being the slave processor.

Processing unit 401 is comprised of a digital signal
processor 410, such as a WE® DSP3210 available from AT
& T. DSP 410 is driven by a DSP clock 411 which provides
a timing reference. Processing system 401 is also coupled to
an audio serial DMA (direct memory access) circuit 420
which facilitates transfers between a local memory 412
and/or information transferred on bus 450. In some embodi-
ments, there is no local memory 412, so DMA circuit 420
may allow DMA transfers on bus 450. This may include
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information transferred via bus 450 from a host processor
circuitry 460, and/or host processor memory. In addition,
audio serial DMA circuit 420 provides output to an audio
port such as 422 in a serial fashion as driven by a serial clock
421. DSP 410 is also coupled to a telecom port 412 for
transmission of serial and bit input/output information, such
as fax and/or computer data information transmitted over
telephone lines.

Processing system 400 further comprises a bus control
unit 440 which is coupled to DSP 410 and a bus interface
circuit 430 which facilitates communication between 401
and bus 450. Bus 450 may be either the computer bus in
which 401 is installed, or may be a host bus coupled to a host
processor 460. Bus 450 may be coupled to other devices
such as input/output units, memory, peripheral interfaces
(not shown) for providing various capabilities within the
system.

Processing units 401 and 402 shown in FIG. 4 may be
implemented as circuitry residing on a motherboard (main
circuitry board) of a computer system or, in another embodi-
ment, it may be implemented as an expansion card inserted
into a slot in a computer system and thus communicate with
host processor 460 over a communication bus 50. In one
embodiment, host 460, bus 450, and processing units 401
and 402 may be one of the Macintosh® family of personal
computers such as the Macintosh® SE or Macintosh® II
manufactured by Apple Computer, Inc. of Cupertino, Calif.
(Apple and Macintosh® are registered trademarks of Apple
Computer, Inc.). Host 460 comprises one of the 68000
families of microprocessors, such as the 68000, 68020, or
68030 manufactured by Motorola, Inc. of Schaumburg, III.

It should be noted that the structure of processing unit 401
is shown as one embodiment and is not necessary for
practicing the present invention. It should also be noted that
in another embodiment, additional DSPs may be coupled to
a bus 450 such that a multiprocessing environment may be
employed to provide enhanced capabilities. Furthermore, a
separate host processor is not mandatory. It will be appre-
ciated by one skilled in the art that many departures and
modifications of the circunitry shown in FIG. 4 may be
employed to practice the present invention.

The currently preferred embodiment of the present inven-
tion is applied to a dual-buffer frame-based processing
system, as shown in FIG. §. Three frames 511, 512, and 513
are shown. During frame 511, input samples 514 are input
and stored in input buffer 515. The size of input buffer 515
is made to be twice the size of a frame, so that two frame’s
worth of data can be stored. Input samples 514 are stored in
the lower half 515a of buffer 5§15. Previous samples stored
in the upper half of input buffer 515b are taken and pro-
cessed according to a particular task 516. The result is then
dumped into the upper half 517b of output buffer 517.
Previously computed output data stored in the lower half
517a are outputted as processed samples 520. Output buffer
517 is made to be twice the size of a frame, so that two
frame’s worth of processed samples can be stored. During
frame 512, input samples 518 are input and stored in the
upper half 515b of input buffer 515. The previously input
samples in 515a (i.e., samples 514) are taken and processed
according to a particular task 516. The result is dumped into
the lower half 517a of output buffer 517. Previously com-
puted samples from frame 511 are outputted as processed
samples 521. During frame 513, samples 519 are input and
stored in the lower half 5154 of input buffer 515. Previously
stored samples from frame 512 (i,e, samples 518) are then
processed according to a task 516 from buffer 515b. The
result is dumped into the upper half 517b of output buffer
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6

517. Samples computed during frame 512 are outputted as
processed samples 522.

This dual-buffer frame-based process is repeated for sub-
sequent frames by storing input samples alternately in the
upper and lower halves of input buffer 515, processing the
samples according to a task and outputting process samples
alternately through the upper and lower halves of output
buffer 517. Thus, in a current frame, samples which were
inputted in the previous frame are being processed and
dumped into an output buffer during the current frames and
outputted during the next frame. Hence, n equals two for this
dual buffered format. Note that the present invention can be
implemented with other formats wherein n-3, 4, 3, etc. If
larger buffers are utilized, input to output latency will
mcrease.

Note that task 516 may actually be composed of many
different tasks in a given instance, and that the data from the
input buffers may or may not be processed and stored in the
output buffer. For example, data may be processed from the
input data stream and directed to a disk file, and data from
another disk file may be processed and fed into the output
buffer.

As additional processors are added to increase the
throughput of the overall system, the present invention
synchronizes the frames of each additional slave processor
to those of the master processor. This is accomplished by
implementing a master phase register to synchronize the
frames of the slave processors. A phase register is shown in
FIG. 6. In the currently preferred embodiment, the phase
register is a 16-bit register comprised of the ten lowest bit
from an address register 601 followed by six prescaler bits
602. The sixteen bit resolution provides for the synchroni-
zation to be accurate to within a small fraction of a sample
period. In alternative embodiments, the phase register can be
enlarged to encompass more bits for accommodating larger
buffers or for achieving more accurate synchronization.

The address register is a register which contains the
address of a particular sample stored in the output buffer.
‘When a stream of data samples is transferred from the output
buffer to an input/output (I/O) device (e.g. an audio digital-
to-analog converter), a direct memory access controller
(DMA) or some other type of data mover is used to send the
data samples over a serial or parallel bus. The data samples
are sequentially read from the output buffer and sent to the
I/O device once per sample period. The address register is
used to store the address of the next sample which is to be
read from the output buffer. Once the last sample in the
output buffer has been sent, the address register is reset back
to the address of the first sample in the output buffer.

Note that in the currently preferred embodiment, the
address is a longword address since stereo data is being
transferred in the format of two 16-bit values. Also, note that
in the currently preferred embodiment, actual DMA trans-
fers are actually done on four sample boundaries and buff-
ered in 16-byte FIFO’s. This quad word transfer technique
is often used to increase bus efficiency when DRAM
memory is used. The implications of this arrangement are
that the address register is really a longword register (i.e., it
increments in steps of 4 bytes). This is implemented by
wiring bits AQ and A1 to zero and feeding the sample count
pulse to bit A2. Thus, the register is 30 counter bits plus two
hardwired zero bits. Bits A2 thru A11 are the upper 10 bits
of the phase register. Bits A12 thu A31 are the base address
for the buffer. Since the DMA channel (not shown) works on
quadword boundaries, it is actually triggered to fetch or store
a quadword from/to its FIFO buffers every four sample
counts.
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The six prescaler bits comprising the lower six bits of the
phase register are generated by a six-bit prescaler. The
prescaler counts from 0 to 63 for each sample period. In
effect, the prescaler divides a sample period into 64 equal
parts, thereby increasing the resolution.

FIG. 7 is a block diagram illustrating how the phase
register can be incorporated into a DMA controller. System
clock 730 is the internal clock for the overall computer
system. It can also be a separate sample rate clock. Clock
generator 731 converts the frequency of system clock 730
into a frequency which is equal to 2" times the sample rate,
where n equals the number of prescaler bits. For a 6-bit
prescaler, the clock generator 731 frequency would be 2554
times the sample rate. The output pulses from clock gen-
erator 731 are used by prescaler 732 to generate sample
pulses. For a 6-bit prescaler, the prescaler generates one
count pulses every 25764 puises from clock generator 31.
The following example details how count pulses are gener-
ated. Given a system clock frequency of 49,152 MHz, a
sample rate of 24,000 samples/second, and a 6-bit prescaler,
clock generator 731 would convert the system clock 730
frequency of 49.152 MHz into a frequency of 2°%24,000=
1,536 MHz (i.e. divide by 32).

Prescaler 732 is incremented by one each time it receives
a clock pulse from clock generator 731. Since the prescaler
has six bits, is is sequentially incremented by one from 0 to
63 and then rolls over back to 0, and the process is repeated.
Each time prescaler 732 rolls over (i.e. goes from a value of
63 back to 0), it generates a count pulse. Thus, a count is
generated every 64 clocks from the clock generator.

The count pulse generated by prescaler 732 is inputted
into address register 733 and down-counter 734. Address
register 733 is thirty-two bits long. As described earlier, only
thirty bits are used because in the currently preferred
embodiment, longwords rather than bytes are being trans-
ferred by the DMA controller. The upper 30 bits of the
address register are loaded from the base address register
every other frame. The value in the base address register
contains an upper 20 bit address portion with the lower 12
bits hardwired to zero. This ensures that the start value in the
phase register is always zero and forces the buffer to be on
2'2 byte or 4096 byte boundaries.

The base address is loaded by software so that the base
address register contains the address of the data buffer being
transferred. The address is on 2'* byte boundaries, or 4096
bytes. This is room for up to 1024 samples at 32 bits per
stereo sample pair. Note that two different base and address
registers are required if data is to be transferred both into and
out of the system. The second register set is part of the DMA
unit.

A down-counter 734 is initially loaded with a value stored
in the buffer size register 736. It is decremented by one each
time it receives a count pulse from prescaler 732. In the
presently preferred embodiment, the output buffer size is
limited to 1024 longwords. (For 48 kHz stereo sound and 10
ms frames, a double buffer size of 960 longwords is
required). Since the counter counts half-buffers, down-
counter 734 needs to be a 9-bit counter (2°75!2). However,
it would be obvious to one skilled in the art that for larger
buffers, the down-counter size can be increased.

Down-counter 734 underflows when either the half-buffer
point or end-point has been reached. The underflow gener-
ates a borrow which instructs buffer size register 736 to
reload down-counter 734. The underflow is generated every
half-buffer, i.e., for a buffer of 960 samples, the underflow
occurs every 480 samples. The borrow is also fed into a
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divided-by-two register 737 which outputs a pulse for every
other borrow pulse. Thus, a pulse is generated every buffer,
or every 960 samples in teh example. The output pulse from
the divide-by-two register 737 signals base address register
735 to reload address register 733. Thereby, address register
733 is reloaded with the base address of the output buffer
cach time the end-point of the output buffer is reached.
Buffer size register 736 is software loaded with a value
equal to the size of the output buffer divided by two and then
subtracting one. For example, a 10 millisecond frame period
and 44,100 samples per second yields 441 samples per
frame. Given a double buffering format, the output buffer
size must be large enough to store 882 samples. Hence,
buffer size register 736 is software loaded with the value
(882/2)—-1=440, to support the given frame and sample rate.

In the currently preferred embodiment, the phase register
is comprised of sixteen bits with the upper ten bits being A2
through A1l of the address register, and the lower six bits of
the phase register being the six prescaler bits. Thus, the
value stored in the phase register is incremented by one for
each count pulse gencrated by the prescaler. The phase
register is reloaded every other frame.

Thereby, the phase register counts from zero to ((buffer
size—1) * 2"+2"—1) every two frames, where n is the number
of prescalar bits. For the example given above (i.e. 10 ms
frames, sample rate of 44,100 sample per second, and buffer
size of 882), the phase register would count from 0 to
((882—1) * 64+63)=56,447 every two frames. Note that the
value of the phase register is reset to zero every other frame,
but the address is not reset to zero. This is due to the fact that
the upper address bits are reloaded from the base address
register. Consequently, the address is reset to the base
address. The phase register is, in effect, a binary synchro-
nous counter.

Note that another embodiment of the phase register is to
use a synchronous counter fed by the 64X prescaler clock,
and synchronously reset the counter when it reaches the
correct value. Thus, the phase register does not have to be
implemented within the DMA channel, but can be external
to it. The only requirements are that the 64X clock is
available, and a synchronous reset pulse is available that sets
the phase register back to zero when the address register is
reloaded.

Phase Register Flowchart

FIG. 8 is a flowchart illustrating the steps for generating
the values to be stored in the phase register. First, a clock
frequency is generated which is 2" times the sample rate,
where n is the number of prescaler bits, step 800. Next, the
base address register and the buffer size register are software
loaded with the output buffer’s base address and ((output
buffer’s size/2)-1), respectively, step 801. The value in the
base address register is loaded into the address register, step
802. Likewise, the value in the buffer size register is loaded
in the down-counter, step 803. The prescaler is incremented
by one at the clock frequency, step 804. The prescaler is
checked to determine whether it have overflowed, step 805.

If the prescaler had not overflowed, then step 804 is
repeated. Otherwise, the address register is incremented by
ong, step 806, and the down-counter is decremented by one,
step 807. The down-counter is then checked to determine
whether it had underflowed. If the down-counter had not
underflowed, then the process is returned to step 104 (incre-
ment prescaler). Otherwise, a determination is made as to
whether the underflow was even-numbered or an odd-
numbered underflow, step 809. If it were even-numbered,
then the process is returned back to step 802. Otherwise, the
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process is returned back to step 803. The phase register value
is comprised of the address register bits and the prescaler
bits as described earlier.

An Example of the Phase Register Operation

An example is now offered to demonstrate a simple
operation of the phase register. Given a buffer size of 4
samples (i.e. two samples per frame), the buffer size register
is software loaded with the value (4/2)-1=1. Likewise, the
base address register is software loaded with the output
buffer’s base address. The prescaler is incremented by one
for each clock generator pulse. Given a 2-bit prescaler, the
prescaler would count 0, 1, 2, 3 for each sample. Thus, the
phase register will count from zero to ((4—1) * 4+3)=15
every two frames. Table 1 below shows the values for the
various registers for successive clock generator pulses. For
this example, the base address is assumed to be 10100.

TABLE 1
Clock Down
Generator Counter Address Pre- Phase
Pulse Register ~ Register  scaler  Register  Description
1 1 10100 00 0000 Sample 1,
Frame 1
2 1 10100 01 0001 Count
3 1 10100 10 0010 Count
4 1 10100 11 0011 Count
5 0 10101 00 0110 Sample 2,
Frame 1
6 0 10101 01 0101 Count
7 0 10101 10 0110 Count
8 0 10101 11 0111 Count
9 1 10110 00 1000 Sample 1,
Frame 2
10 1 10110 01 1001 Count
11 1 10110 10 1010 Count
12 1 10110 11 1011 Count
13 0 10111 00 1100 Sample 2,
Frame 2
14 0 10111 01 1101 Count
15 0 10111 10 1110 Count
16 0 10111 11 1111 Sample 1,
Frame 3
17 1 10100 00 0000 Count
18 1 10100 01 0001 Count
19 1 10 0010 Count

10100

Initially, the address counter is loaded with 10100 and the
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caler increments by one for each clock generator pulse.
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ates a count pulse each time it rolls over. In other words, it
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FIG. 9 illustrates the value of the phase register as a
function of time, in reference to four frames 901-904. The
linearly increasing ramp is actually a series of incremental
steps. The greater the number of bits used in the prescalar,
the higher the resolution becomes, which results in a better
approximation of the ramp function. It can be seen from
FIG. 9a that each ramp corresponds to two frames. This is
due to the implementation of a double-buffering scheme, as
discussed earlier. However, in the currently preferred
embodiment, a simple algorithm converts this double-frame
format into a single-frame format, so that each ramp corre-
sponds to one frame. FIG. 95 illustrates the single-frame per
ramp format for the four frames 901-904. A double-to-
single frame conversion algorithm is shown below.

Converted__Phase_ Register_ Value: =

If Phase_ Register_ Value > Max__Value/2
then Phase_ Register__Value — Max__Value/2
else Phase_ Register_ Value

endif

Max__Value is the maximum phase register value just before
it is rolled back to 0 plus one. Each ramp now corresponds
to one frame, as shown in FIG. 9b. Also, the ramps are in
phase and have the same frequency as the frames. Using our
previous example given in Table 1, this calculation becomes
Converted_ Phase Register_ Value=if PRV>8 then PRV—-8
else PRV.

The frames of additional slave processors can be synchro-
nized with the master processor by utilizing the converted
phase register value. The requirements for the slave proces-
sor are as follows:

1) The slave processor is able to read the master’s phase
register in a reasonable time (i.e., much shorter than a
frame), and the value received represents the value of the
phase register at or close to the time received.

2) The slave processor has a local timer/counter running
from its own local clock that can generate frame interrupts
and can be read, loaded, and started by the slave processor.

3) The slave timer/counter will automatically reload from
a timer reload register when it has counted down.

4) The reload value stored in the timer reload register can
be updated by software without disturbing the current timer
count.

5) The frequency ratio of the timer/counter and the phase
register must be known.

6) The maximum value of the phase register must be
known.

These requirements are met by a normal bus interconnect
between processors and most standard timer/counter con-
figurations. Note that the present invention can be practiced
with more limited hardware, such as timers that must be
reloaded in software rather than automatically reloading in
hardware. However, additional constraints on the sofware
are required, such as very fast software response time to
reload the timer.

When a slave processor is first initialized, its frames are
probably not synchronized with those of the master proces-
sor. A transition frame is implemented during start-up in
order to initially synchronize the slave processor. The tran-
sition frame forces the frame boundaries of the slave pro-
cessor. to be synchronous (within the accuracy allowed by
the number of prescaler bits in the phase register) for the
next frame. FIG. 10 shows the implementation of a transi-
tion frame to establish initial synchronization. Initial slave
frames 1000-1002 are asynchronous with the “master”
frames 1003-1005. A variable length transition frame 1006
is implemented to initially synchronize the following
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adjusted slave frames 1007-1009 with the master frames
1010-1012. The transition frame is generated by loading a
transition value into the slave processor’s timer/counter so
that the transition frame is terminated at almost exactly the
same time as the master processor’s frame to the accuracy
allowed by the number of prescaler bits in the phase register.
The transition frame calculation will be described in detail
in a subsequent portion of this description.

After the initial synchronization with a transition frame,
the slave processor is kept in sync by implementing a fine
synchronization program. The fine synchronization program
instructs the slave processor to fetch the current value in the
phase register sometime during each frame. The algorithm
described herein does not require any particular conditions
bc met as to when the phase register is read by the slave
processor, as long as it is read sometime during each frame.
In addition, it is assumed that immediately after the value of
the master phase is received by the slave processor, a
snapshot of the slave timer is also taken. These two numbers
will be used to ascertain the state of synchronization
between the slave and master frames. The phase register
value is then converted as described above, so that each
ramp corresponds to one frame.

The converted phase register value and the slave timer
value can now be used to determine the phase register value
at the point that the timer reloads, causing the frame inter-
rupt for the slave processor. Once this value has been
determined, it is then possible to determine what actions, if
any, are required to maintain or improve synchronization.

It is necessary to take the sampled values (i.e., converted
phase register and timer/counter) and compute what the
value of the phase register was when the timer reloaded. The
calculation proceeds as follows. First, determine the number
of timer/counter clock periods which have elapsed since the
beginning of this slave frame:

elapsed=timer max—sample value

Next, convert this to phase register units by dividing by the
ratio of timer/converted phase register counting rate:

phase elapsed = clapsed

ratio
Note that the ratio can also be calculated from the maximum
timer count and maximum converted phase register count:

timer max + 1

phase max + 1
2

ratio =

Note that this ratio is initially calculated based on the crystal
specs of the hardware, assuming no error. This value can be
updated over time by taking the adjusted timer reload value
that is a result of the fine synchronization process, and
plugging it into this formula. This will reduce the error in
this calculation from the clock errors (max total error is
0.02%).

Next, determine what the converter phase register value
was at the slave frame boundary.

slave phase =

if phase elapsed = converted phase
sample
(converted phase max + 1) — (phase
elapsed — converted phase sample)
converted phase sample — phase
elapsed.

then

elsc

The two (then-else) portions of the if statement are
required to distinguish between a lead and a lag condition.
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Given a lag condition (i.e., the slave boundary lags the
master boundary), the “else” clause is used:

slave phase=converted phase sample phase elapsed.

Given a lead condition, the “then” clause is used:

slave phase = (converted phase max + 1) —~
(phase clapsed —converted phase sample) =
(converted phase max + 1) + converted
phase sample — phase elapsed

FIGS. 11a and 11/ illustrate a lead and a lag condition,
respectively. The converted phase register 1100 and timer/
counter 1101 values are sampled at some point in time 1102,
This gives the sampled timer value 1103 and the sampled
converted phase register value 1104. The sampled values are
then used to calculate the converted phase register value at
the instance that the timer/counter reloads 1105. The value
is shown as 1106. Based on this value, subsequent frame
lengths are adjusted to maintain or improve synchronization.
Note that in the lead case, the computed value 1106 is in the
upper range of possible values. In the lag case, the computed
value 1106 is in the lower range of possible values.

A final calculation can be made at this point:

phase error =
if slave__phase > half__phase/2
then slave__phase — max__phase
else slave_phase
half__phase is max converted phase + 1
max__phase is max converted phase + 1

where

This gives a positive value for lags and a negative value
for leads, in units of phase counts.

The following two examples illustrate the calculations
used for given lead and lag conditions.

Lead Condition: max phase register = 999

max converted phase register = 499
max timer register = 1999

ratio = (1999 + 1)/(499 + 1) = 4
sampled phase register = 700
converted phase sample = 200
sampled timer = 1180

elapsed = 2000 — 1180 = 820
phase clapsed = 820/4 = 205

since 205 2 200, the “then” clause
kicks in:

slave phase = 500 + 200 — 205 = 495
since 495 > 500/2, then

phasec error = 495 — 500 = -5

Thus, the slave phase value at the slave frame boundary was
495, indicating that the master frame had not yet begun. This
is a phase error of 5. The slave frame is leading the master
frame. The slave frame is adjusted to be longer to improve
future synchronization.

Lag Condition: max phase register = 999

max converted phase register = 499
max timer register = 1999

ratio = (1999 + 1)/(499 + 1) =4
sampled phase register = 700
converted phase sample = 200
sampled timer = 1220

elapsed = 2000 - 1220 = 780
phase elapsed = 780/4 = 195
since 195 < 200, the “else” clause
kicks in:
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-continued

slave phase =200 — 195 =5
phase error = 5

Thus, the slave phase value at the slave frame boundary was
5. This is a phase error of 5. This indicates that the master
frame had already begun. The slave frame is lagging the
master frame. The slave frame is adjusted to be shorter to
improve future synchronization.

By comparing phase error values for successive frames, it
can be determined whether the slave frames are drifting
closer together or farther away from the master frames. If the
computed error is negative and successive computed values
are becoming less negative or if the computed error is
positive and successive computed values are becoming less
positive, then the slave frames are drifting closer to the
master frames. No additional action need be taken. How-
ever, if the computed error is negative and successive
computed values are becoming more negative, this indicates
that the slave frames are drifting farther ahead of the master
frames. The timer/counter is adjusted to make the slave
frames slightly longer. If the computed error is positive and
successive computed values are more positive, this indicates
that the slave frames are drifting further behind the master
frames. The timer/counter is adjusted to make the slave
frame slightly shorter.

This fine synchronization process causes the slave’s frame
boundary to oscillate about the master’s frame boundary.
Given a 6-bit prescalar, the phase register resolution is Ysath
of a sample period. The variation can be kept well within %2
of a sample period (32 phase clocks). An example of a fine
synchronization program for performing the frame adjust-
ments is shown below:

begin timer adjust
if perr > max/2
then ;slave frames lead master
if perr < lasterr
then ;we are not closer
timerval = timerval + ratio ;make
frames longer
end if;
else ;slave frame lags master
if perr > lasterr
then ;we are not closer
timerval = timerval — ratio ;make
frames shorter
end if;
endif;
lasterr ;= perr ;update lastval

timer := timerval ;update timer

end timer adjust

where:
perr=phase error
max=maximum converted phase register value+l
lasterr=previous perr from last frame
timerval=value loaded into timer for next frame

ratio=ratio of timer to phase register counting
The timer/counter value is typically adjusted in steps of one
phase register count per frame—the maximum resolution
available. This is accomplished by using the equivalent
timer value, represented by the count ratio, as the adjustment
value. Thus, if the phase register is counting at 1,536 MHz
as described previously, and the timer rate is 13.75 MHz (72
ns per step), the ratio is approximately 9.

Note that if no change is noted between frames, no action
is taken. This is acceptable since the adjustment effect is
delayed by one frame, and a zero difference indicates the
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correction made in the previous frame will begin driving the
phase error back toward zero on this frame, which will show
up in next frame’s calculation.

With +0.01% crystals and 10 ms frames, the worst case
error 0.02% for the beginning of the first synchronized frame
1007 is 0.0002 * 10 ms or 2 ps. This is equal to about 3 phase
register steps. This error will only be seen if the transition
frame is amost as long as a regular frame. This error will
show up in the first synchronized frame 1007 when it
calculates the phase error.

The synchronization program described will adjust this
worst-case error and keep the frame boundaries within 9
phase counts, or within %aths of a sample period at 48
KHz—well within the desired specification. Below is a table
describing this process:

TABLE 2
Frame Calc’d Timer Timer Err in Ending

# PE Adj. Reload this Fm PE
Transition Frame 138888 -3 -3

1 -3 9 138897 -3 -6
2 -6 9 138906 -2 -8
3 -8 9 138915 -1 -9
4 -9 9 138924 0 -9
5 -9 0 138924 1 -8
6 -8 0 138924 1 =7
7 -7 0 138924 1 -6
8 -6 0 138924 1 -5
9 -5 0 138924 1 —4
10 -4 0 138924 1 ~3
11 -3 0 138924 1 -2
12 -2 0 138924 1 -1
13 -1 0 138924 1 0
14 0 -9 138915 1 1
15 1 -9 138906 0 1
16 1 0 138906 -1 0
17 0 0 138906 -1 ~1
18 -1 9 138515 -1 -2
19 -2 9 138924 0 -2
20 -2 0 138924 1 -1
21 - -1 0 138924 1 0
22 0 -9 138915 1 1
23 1 -9 138906 0 1
24 1 ] 138906 -1 0
25 0 0 138906 -1 -1
26 -1 9 138915 -1 -2
27 -2 9 138924 0 -2
28 -2 0 138924 1 -1
29 -1 0 138924 1 0
30 0 -9 138915 1 1

In Table 2, the frame numbers are counted starting from
frame 1007 in FIG. 10. The first entry in the table is from the
transition frame, where the timer reload value is the “cor-
rect” value. In our example, this is calculated from 10 ms/72
ns. Also shown is a worst case error from the transition
frame —an ending phase error of —3. This is a lead condi-
tion, where the slave frames are 3 phase counts too short,
and must be increased. The required timer value for zero
error in this case is assumed to be 138915, exactly 0.02%
higher than the “correct” value.

The “Calc’d PE” in Table 2 is the calculated phase error
during that frame, and is simply the value from the “Ending
PE” column of the previous row. The “Timer Adj.” column
shows the adjustment to the timer reload value calculated by
the timer adjust program described earlier. Note that it either
adds or subtracts the ratio (a value of 9 in this example), or
makes no adjustment. The Timer Val. column shows the
reload value which will be used to determine the length of
the next frame. This delay of one frame is significant. It

- guarantees that the result of the correction will not be seen

until two frames later. This is why we do not adjust the timer
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value if two PE’s in a row are equal. The adjustment from
the previous frame has not yet taken effect, and has already
started the frame boundary correction toward zero error.

The “Err in this Fm” column shows the current slave
frame error. It is calculated by taking the difference between
the actual and desired frame count and dividing by 9. This
value is truncated to an integer, giving the same result as the
converted phase register value read by the program.

Finally, the “Ending PE” column adds the error from the
previous frame to the error in this frame to give the cumu-
lative error.

The result of this process is to bring into synchronization
the frames to within 2 phase clocks after the initial synchro-
nization period. This initial period is required to make the
initial correction from the “correct” value to a real value
based on the actual counting rates. Over time, as the crystal
temperatures drift and ystem voltages drift, the counting
rates will change, and adjustments will be made automati-
cally.

The above calculations assume no error in calculating the
phase error. However, a portion of the 0.02% error will show
up in the phase error calculation, as well. This can be
factored out over time by using the revised timer reload
value to recalculate the ratio used in the phase error calcu-
lation.

As more slave processors are added, the latency for shared
resources, such as the phase register, increases. Thus,
another factor in performing synchronization is to compen-
sate for program and bus delays in the system.

FIG. 12 is a timeline which shows these delays. When the
timer/counter generates an interrupt at time 1200 to the slave
processor, there is some time which elapses prior to retriev-
ing the routine for reading the phase register. This is
indicated in FIG. 12 as program delay time 1201. At time
1202, a request is issued to read the phase register. Some
amount of time elapses before a grant is received and data
is returned from the phase register. This is known as the bus
delay time 1203. Bus delay time 1203 is a function of other
bus transactions in progress, as well as the priority of the
requesting processor. The data from the phase register is
driven by one or more bus drivers and is received at time
1204. It is important that phase register read operations do
not return false values (i.e. phase register is synchronous).
Once the phase register read instruction has been completed,
the local timer value is read at time 1206. The timer read
delay 1205 is a fixed, known value and is typically insig-
nificant.

In the currently preferred embodiment of the present
invention, the timer/counter value is used to calculate the
actual value of the converted phase register at the time when
the timer interrupt had occurred. Thus, the delays 1201 and
1203 are not significant. The value of 1205 is significant, but
since it is a known and very small value relative to the phase
register counting rate, the algorithm can adjust from syn-
chronization to the maximum accuracy of the phase register.

A transition frame calculation is now described. Referring
to FIG. 10, the transition frame calculation is performed
during unsynchronized frame 1002. This calculation results
in a transition frame timer value, which is stored in the timer
reload register prior to the end of frame 1002. During
transition frame 1006, the “correct” value for the timer
reload register is restored, resulting in subsequent frame
1007 being initially closely synchronized. This “correct”
value is the value required to generate the frame size desired,
assuming no clock errors. For example, if the timer was
counting at 2 MHz, a timer reload value of 20,000 would be
required to generate 10 ms frames. It is this “correct” value
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that the fine synchronization program described earlier
adjusts to maintain synchronization. This fine synchroniza-
tion program begins running in frame 1007 and runs once
per frame thereafter.

In the same manner as before, the master phase register
and local timer/couter is sampled during frame 1002. The
values are used to calculate the converted phase register
value at the frame boundary between frame 1001 and 1002.
This converted phase error value is then subtracted from the
converted phase register maximum value plus one. The
difference 1010 is the remaining time to the end of a master
frame at the current slave frame boundary. Referring to FIG.
10, this is essentially the same value as frame 1006.

This number is then multiplied by the counting ratio of the
local timer to the converted phase register. This results in the
correct timer value to give a frame of the correct length for
transition frame 1006.

The following example demonstrates a transition frame
process:

max phase register=999

max converted phasc register=499
max timer register=1999
ratio=(1999+1)/(499+1)=4

sampled phase register=372

converted phase sample=372

sampled timer=844
clapsed=2000-844=1156

phase elapsed=1156/4=289

since 289<372, usc the “else” if clause
slave phase=372-289=83

time remaining to end of master frame=500-83=417
convert to timer units:  417*%4=1668

The value 1668 is loaded into the timer reload register
during frame 1002. This value is automatically loaded into
the timer when the counter counts to zero at the end of frame
1002 and generates a short frame 1006. During frame 1006,
the “correct” value 1999 must be reloaded into the timer
reload register. This “correct” value is then automatically
loaded into the timer at the end of the transition frame and
generates frame 1007,

During frame 1007, the fine synchronization program
runs and may slightly adjust the timer reload value. The
adjusted value does not actually take effect until frame 1008.

Synchronization of Data I/O Streams

Given two processing units having a DSP, a phase regis-
ter, and serial audio data streams, the act of synchronizing
one of the DSP’s (the slave) frame rate to the other (the
master) as described above, might result in the slave pro-
cessor no longer being synchronized to its own data stream.
Whereas the slave processor is synchronized to the data
stream of the master, it loses the data synchronization to its
own DMA subsystem.

This loss of data synchronization might occur because the
sample rate is typically slightly different between the slave
and the master. After a period of time, the /O subsystem
input stream provides one too many or one too few data
samples in a given frame. During the same frame, the output
stream either uses one less sample than was generated or
requires one additional sample.

For instance, given 24000 samples per second and a clock
error of 20.01%, the worst case sample rate error is 4.8
samples per second (assuming one crystal is 0.01% fast and
the other is 0.01% slow). This translates to approximately
one sample dropped or one extra sample every 200 ms.

The phase register of the slave processor can be utilized
to establish data synchronization in a manner similar to the
process described for frame synchronization. Both input and
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output data streams are double buffered, as described earlier.
Next, the location of the data buffer I/O pointers at the frame
boundary is calculated. This calculation is very similar to the
one described for frame synchronization, except that the
phase register value is not converted. The reason is that the
unconverted phase register, running at a cycle rate of % the
frame rate, gives the offset into the I/O buffers.

The data synchronization process can be handled on
multiple DSPs that are part of the master set. The slave
DSPs’ phase register and the local DSPs’ timer is read,
rather than the master’s phase register. Any of the DSPs,
including the master, can handle the I/O resynchronization
process for a given slave processor. Typically, it is the slave
processor associated with the I/O channel, which accom-
plishes this.

The phase register value at a slave frame boundary is then
computed using the same type of calculation as described
above. This value is converted into an address offset by
shifting the value right n places, where n is the number of
prescaler bits (e.g., 6 in the currently preferred embodi-
ment), and adding the result to the base address. This
recovers the address offset that the DMA channel was using
when the frame boundary passed. The actual input and
output sample pointers can be recovered by adding this
value to the base address for the input buffer and the base
address for the output buffer. Due to the double buffering
process, the offset alternates between two values on subse-
quent frames. For subsequent frames, extra or missing data
samples can be determined based on the calculated address
offset. An extra data sample causes a larger than expected
offset, whereas a missing sample causes a smaller than
expected offset. Once the offset is determined, data resyn-
chronization begins. :

Data resynchronization requires a processing algorithm in
addition to the phase register algorithm described above,
because the data is arriving or leaving at a slightly different
rate than the processor is taking or generating data. In
essence, a sample rate conversion technique is required to
perform data resynchronization.

Theoretically, an algorithm attempting to generate exactly
N samples per frame from a stream that has slightly more or
less samples, or conversely, attempting to generate a stream
with slightly more or slightly less samples per frame from
exactly N samples per frame requires an additional buffer.
This is because hardware requires that exactly the produced
samples be taken every frame or that exactly the required
samples be generated. If the input process or output process
maintains a small history buffer, the history buffer can
contain the extra samples or provide the missing samples.
Meanwhile, the processing algorithm adjusts and corrects
the loss or gain of samples by accepting or generating
samples slightly faster or slightly slower. The result is a
slowly changing process that adapts to changes in the
number of samples in the history buffer.

For example, assume that an input process uses a
16-sample history buffer. The objective is to maintain this
buffer with 8 samples. Starting with 8 samples of silence in
the buffer, these 8 samples plus X-8 samples from the input
buffer are fed to the sample rate convertor portion of the
input process, where X is the desired number of samples per
frame. Initially, the sample rate convertor is running with a
conversion ratio of exactly 1.00000. The remaining 8
samples from the input buffer goes into the history buffer,
and would be the first 8 samples in the following frame. This
process continues until an extra sample is received or a
missing sample is detected. The result is that X samples flow
out of the input process to a frame-synchronous process
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using the data. However, the history buffer now contains
either 7 or 9 samples. This fact is known by the input
process. The input process also knows how many samples
were received before the occurrence of the extra/missing
sample. Consequently, the process can determine a first
estimate of the rate error and could begin gradually moving
the conversion rate towards the estimated value.

As more data errors occur, the history buffer becomes
more full/empty, until the conversion process takes correc-
tive action. Thus, data synchronization is achieved by the
input process maintaining a half-full history buffer over
time, and not allowing the buffer to either overflow or
underflow.

A similar algorithm can be used for outputting data. In an
output case, the history buffer is placed between the output
process and the output buffer. The rate conversion calcula-
tion for the output is the same as for the input. Typically,
only one determination of the conversion rate need be made.

The resynchronization process is similar for input data
streams and output data streams. Given an input stream, the
first step is to clear the input buffer and the history buffer.
Next, the serial port is initiated, with the port beginning its
dump at the beginning of the buffer and automatically
wrapping around after two frames of data have been
received. Sometime in the next frame, the input process
algorithm is run. Note that this method eliminates the critical
timing requirement for initializing a serial port at a frame
boundary. As described earlier, the slave phase register and
local timer are read and are used to calculate the DMA
pointers at the frame boundary.

Referring to FIG. 13, the input buffer 1300 contains some
number of input samples 1301, and the rest is silence
samples 1302. Since the DMA pointer 1303 is computed at
the beginning of the frame, the current DMA pointer 1304
is actually different than the computed value 1303. Since this
is the first time the input processor task has run, the previous
X samples (one frame’s worth) is taken from the buffer 1302
and 1305 (silence followed by samples). The data passed on
to downstream processes comprises the 8 samples from the
history buffer and X-8 samples from the input buffer. The
oldest 8 samples from the input buffer is stored in the history
buffer.

During the following frame, the computed sample pointer
is X samples away from the previous value, and the input
task can access the XX previous samples. These samples are
1306 and 1307, shown in FIG. 13.

Over subsequent frames, the calculated pointer alternates
between the initial two values, until at some point, a sample
is missing or an extra sample appears. This occurrence is
detected by noting a change in the computed DMA pointer.
When this happens, the missing sample is supplied from the
history buffer or the extra sample is absorbed by the history
buffer, as described earlier.

The conversion process should not be rapidly readjusted
when the frame boundary is drifting past a data sampling
boundary. Hence, no action should be taken until there are
2 extra samples or 1 too few samples. If there is the exact
number of input samples or one extra, no change is made to
the conversion rate. If there is one less or two extra samples
the conversion rate is modified.

A similar mechanism is used for output ports. FIG. 14
illustrates an output buffer 1400. The computed value of the
output DMA pointer 1401 determines where the output port
was getting its data from at the beginning of this frame (e.g.,
from last frame’s output data 1402). By the time the DSP
receives this information, the output serial process has
already transmitted part of the data from the last frame to the
output channel as indicated by pointer 1403.
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The startup process is similar for the output processes.
Silence samples are stored in the entire output buffer and in
the output history buffer. Typically, both input and output are
started together, and are tied together in hardware. During
the next frame the output task is run.

In most cases, a majority of a frame has elapsed since the
pointer was sampled (i.e., at the beginning of the frame).
This is due to the fact that the input task runs early in a
frame, and the output task runs late in a frame. In between
is the realtime processing.

Since this is the first frame that the output process has run,
X samples 1404 are stored in the output buffer just before the
pointer 1401. These samples comprise 8 samples from the
computed output history buffer plus X-8 samples from the
sample rate converted output data stream. Note that the
initial conversion rate is exactly 1.0000. The last 8 samples
go into the history buffer.

The serial port soon begins to output the new data, starting
approximately at the end of the current frame and at the
beginning of the next one. One frame later, when the output
process is run, the computed sample pointer is X locations
offset from the previous value. Therefore, the new output
samples 1405 are stored in the correct location immediately
after the samples 1404.

This process continues until at some point, the computed
pointer is not exactly X locations from the previous value.
If the I/O port is running ahead, an extra output sample
should be taken from the history buffer for the current frame.
Note that the last sample is not overwritten from the previ-
ous frame because the data is stored directly up against the
computed pointer.

If the port is running one sample behind, then one less
sample is moved to the buffer. The extra sample is stored
into the history buffer. The output process conversion rate
can be derived by using the rate computed by the input
process or can be independently derive it using the same
method.

FIG. 15 illustrates a block diagram of the data I/O
resynchronization mechanism. The slave DMA 1500 I/O
channel to be resynchronized is coupled to input double
buffer 1501. Either X1, X, or X+1 samples per frame is sent
to an input process 1502. The input process 1502 concat-
enates the samples received from the input double buffer
1501 to the samples taken from the input history buffer
1503. Input process 1502 takes the number of samples it
needs for its sample rate converter to generate exactly X
samples to be sent to the other processes 1504. Thereby,
input process 1502 supplies X samples per frame to the other
processes 1504, resulting in input data synchronization.
Likewise, for output data synchronization, the other pro-
cesses 1504 supplies X frame synchronous output samples
to an output process 1505, These output samples are pro-
cessed by a sample rate converter in the output process 1505
and the resulting samples are concatonated with the samples
stored in the output history buffer 1506. The output process
1505 then outputs X—1, X, or X+1 samples to the output
double buffer 1506. The remaining samples are dumped in
the output history buffer 1506. Output double buffer 1506
outputs these samples to an output DMA VO channel 1507.

Note that this method of resynchronization does not
require synchronization hardware to be connected between
the DSPs. Furthermore, this method eliminates the need for
time-critical relationships in starting up input and output
channels (e.g., serial ports). Also, the synchronization soft-
ware is not time critical, so long as it is run sometime during
each frame.

Thus, an apparatus and method of synchronizing the
frames of one or more slave processors to the frames of a
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master processor and of synchronizing the data of two
separate I/O channels attached to the master and slave
processors by implementing a phase register, is disclosed.

What is claimed is:

1. In a computer system having a first processor, a second
processor, a storage device and a timer, said first processor
processing a first frame set, said first frame set being divided
into a first plurality of frames by a first plurality of frame
boundaries, each of said first plurality of frames including a
plurality of samples, said second processor for processing a
second frame set, said second frame set being divided into
a second plurality of frames by a second plurality of frame
boundaries, a method for synchronizing said first frame set
with said second frame set comprising the steps of:

a) incrementally adjusting a value in said storage device;

b) reading a current value in said storage device after

incrementally adjusting said value in said storage
device at step a);

c) reading a current timer value in said timer, said current
timer value indicating a time period lapsed since a
restart of said timer wherein said timer restarts at an
occurrence of one of said second plurality of frame
boundaries;

d) determining an old value that was stored in said storage
device when said timer was restarted, said old value
determined based on said current value of said value in
said storage device and said current timer value of said
timer;

e) converting said old value into timer units; and

f) changing a frame length of said second plurality of

frames by an amount of said timer units.

2. The synchronization method of claim 1 further com-
prising the step of generating a transition frame after a
start-up of said computer system, wherein said transition
frame is inserted into said second plurality of frames, and
said transition frame terminates at an occurrence of a next
frame boundary of said first plurality of frames wherein
initial synchronization is achieved between said first plural-
ity of frames and said second plurality of frames.

3. The synchronization method of claim 1 wherein said
timer units are determined by:

a) subtracting said old value from a maximum storage
device value to obtain a difference value;

b) computing a ratio which is defined as:
(a frequency at which a value in said timer is incre-
mentally adjusted)/(a frequency at which a value in
said storage means is incrementally adjusted); and

c) multiplying said difference value by said ratio.

4. In a computer system having a master processor, a slave
processor, an output buffer and a timer, said master proces-
sor having a phase register, a down-counter, a buffer size
register and a base address register, said master processor for
processing a master frame set, said master frame set being
divided into master frames by master frame boundaries, each
of said master flames having a plurality of samples, said
phase register having a prescaler and an address register,
said address register having a first value indicating an
address of one of said samples in one of said master frames,
said prescaler coupled to said address register and said down
counter, said prescaler having a second value which com-
prises N distinct quantities, said phase register having a third
value comprised of said first value in said address register
and said second value in said prescaler, said buffer size
register coupled to said down-counter and including a fourth
value indicating a size of said output buffer, said base
address register coupled to said address register and includ-
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ing a fifth value indicating a base address of said output
buffer, said slave processor for processing a slave frame set,
said slave frame set being divided into slave frames by slave
frame boundaries, a method for synchronizing said slave
frame set with said master frame set comprising the steps of:

a) incrementing said second value in said prescaler;

b) incrementing said first value in said address register;

c) decrementing a sixth value in said down-counter when
said prescaler overflows, wherein said prescaler over-
flows when said second value in said prescaler has
incrementally comprised each of said N distinct quan-
tities;

d) loading said fourth value in said buffer size register into
said down-counter when said down-counter under-
flows, wherein said down-counter underflows when
said down-counter has counted up to the fourth value in
said buffer size register;

€) loading said fifth value in said base address register into
said address register when said down-counter counts
twice the fourth value in said buffer size register;

f) during said steps a),e) reading a current value of said
third value in said phase register and a current timer
value in said timer, said current timer value of said
timer indicating a time period lapsed since a restart of
said timer wherein said timer restarts at an occurrence
of one of said slave frame boundaries;

g) calculating an old value of said third value in said phase
register said old value present when said timer was
restarted, said old value calculated based on said cur-
rent value of said third value in said phase register read
at step f) and said current timer value of said timer read
at step f);

h) converting said old value into timer units; and

i) adjusting a slave frame length by an amount of said
timer units.

5. The synchronization method of claim 4 wherein said
prescaler is incremented at a frequency of 2" times a rate
said master processor is sampling at, where n is the number
of prescaler bits.

6. The synchronization method of claim 4 further com-
prising the step of generating a transition frame after a
start-up of said computer system, wherein said transition
frame is inserted into said slave frames, and said transition
frame terminates at an occurrence of a next frame boundary
of said master frame boundaries wherein initial synchroni-
zation is achieved between said master frames and said slave
frames.

7. The synchronization method of claim 4 wherein said
timer units are determined by:

a) subtracting said old value from a maximum phase

register value to obtain a difference value;

b) computing a ratio which is defined as:

(a frequency at which a value in said timer is incre-
mentally adjusted)/(a frequency at which a value in
said phase register is incrementally adjusted); and

c) multiplying said difference value by said ratio.

8. A computer system for synchronizing a first frame set
with a second frame set comprising:

a first processor for processing said first frame set, said
first frame set being divided into a first plurality of
frames by a first plurality of frame boundaries, each of
said first plurality of frames including a plurality of
samples;

a second processor coupled to said first processor for
processing said second frame set, said second frame set
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being divided into a second plurality of frames by a
second plurality of frame boundaries;

a storage device coupled to said first processor, said
storage device storing a value;

an incrementer coupled to said storage device, said incre-
menter incrementally adjusts said value in said storage
device;

a timer coupled to said second processor, said timer
having a timer value, said timer value being restarted
when one of said second plurality of frame boundaries
is encountered, said timer value being incrementally
adjusted after being restarted;

and wherein one of said first processor and said second
processor determines an old value that was stored in
said storage device when said timer value was restarted
wherein said old value is determined based on a current
value of said storage device and a current timer value
and wherein a frame length of one of said second
plurality of frames is adjusted based upon said old
value.

9. The computer system of claim 8 further comprising an
initializer which generates a transition frame for said second
plurality of frames, wherein said transition frame terminates
at an occurrence of one of said first plurality of frame
boundaries.

10. An apparatus for synchronizing a first frame set with
a second frame set comprising:

a first processor for processing said first frame set, said
first frame set being divided into a first plurality of
frames by a first plurality of frame boundaries, each of
said first plurality of frames including a plurality of
samples;

a second processor coupled to said first processor for
processing said second frame set, said second frame set
being divided into a second plurality of frames by a
second plurality of frame boundaries;

a storage device coupled to said first processor and storing
a value;

an incrementer coupled to said storage device, said incre-
menter incrementally adjusting said value, wherein said
value increases as a function of time, wherein said
value is reset when one of said first plurality of frame
boundaries is encountered;

a timer coupled to said second processor, said timer
storing a timer value, said timer value being restarted
when one of said second plurality of frame boundaries
is encountered, said timer value being incrementally
adjusted after being restarted; and

an initial synchronizer coupled to said second processor
and generating a transition frame to be inserted into
said second frame set to synchronize said first frame set
with said second frame set, said transition frame having
a frame length determined based on said value in said
storage device and said timer value.

11. The computer system as claimed in claim 10 further

comprising

means for increasing and decreasing successive frame
lengths of said second frame set based on a current
value in said storage means and a current timer value.

12. A computer system for synchronizing data to a frame

set, said data including a plurality of samples, said computer
system comprising:

a processor for receiving and processing said plurality of
samples of said data that are within said frame set, said
frame set being divided into a plurality of frames by a
plurality of frame boundaries;
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a first storage means for storing said samples of said data;

a second storage means for storing a value wherein said
value includes prescaler bits and an address of one of
said samples of said data stored in said first storage
means;

an incrementing means for incrementally adjusting said
value stored in said second storage means, wherein said
value increases as a function of time and as an address
of a consecutive one of said samples of said data is
loaded into said second storage means;

areset means for resetting said value stored in said second
storage means when one of said plurality of frame
boundaries is encountered;

a timer means for storing a timer value, said timer value
being restarted when one of said plurality of frame
boundaries is encountered, said timer value being
incrementally adjusted after being restarted;

a first read means for reading a current value stored in said
second storage means;

a second read means for reading a current timer value
stored in said timer means;

means for determining an old value that was stored in said
second storage means when said timer value was
restarted wherein said old value is determined based on
said current value of said second storage means and
said current timer value;

means for determining an address offset by shifting out
prescaler bits from said old value;

means for determining whether there is an extra or a
missing sample in said data in one of said plurality of
frames based on said address offset; and

a third storage means for storing said extra sample and for
providing said missing sample so that said processor
receives a predetermined number of samples for each
of said plurality of frames.

13. The apparatus of claim 12 wherein said data includes

either input data or output data.

14. In a computer system having a processor for receiving

and processing data that is within a frame set and a timer,
said data including a plurality of samples, said frame set
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being divided into a plurality of frames by a plurality of
frame boundaries, a method of synchronizing said data to
said frame set, comprising the steps of:

a) storing said samples of said data in a first storage
means;

b) storing a value in a second storage means wherein said
value includes prescaler bits and an address of one of
said samples of said data;

c) incrementing said value stored in said second storage
means wherein said value increases as a function of
time and as an address of a consecutive one of said
samples of said data is loaded into said second storage
means;

d) reading a current value in said second storage means
after said value is incremented in step c);

e) reading a current timer value in said timer, said current
timer value indicating a time period lapsed since a
restart of said timer wherein said timer restarts at an
occurrence of one of said plurality of frame boundaries;

f) determining an old value that was stored in said second
storage means when said timer was restarted wherein
said old value is based on said current value of said
second storage means read at step d) and said current
timer value read at step e);

g) determining an address offset by shifting out prescaler
bits from said old value; i

h) determining whether there is an extra or a missing
sample in said data in one of said plurality of frames
based on said address offset; and

i) storing said extra sample if there is said extra sample
and providing said missing sample to said processor if
there is said missing sample so that said processor
receives a predetermined number of samples for each
of said plurality of frames.

15. The method of claim 14 wherein said data includes

either input data or output data.

16. The method of claim 14 wherein said extra sample is

stored in a third storage means, and said missing sample is

40 provided from said third storage means to said processor.
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