United States Patent [y

Anderson et al.

US005628013A

(111 Patent Number:
1451 Date of Patent:

5,628,013
May 6, 1997

[54] APPARATUS AND METHOD FOR
ALLOCATING PROCESSING TIME IN A
FRAME-BASED COMPUTER SYSTEM

[75] Inventors: Eric C. Anderson, San Jose; A. Phillip
Sohn, Campbell, both of Calif.; Hugh
B. Svendsen, Atlanta, Ga.

[73] Assignee: Apple Computer, Inc., Cupertino,
Calif.

[21] Appl. No.: 954,338

[22] Filed: Sep. 30, 1992
[51] Int. CL® GOGF 9/44
[52] U.S.CL 395/677

[58] Field of Search 395/550, 650;

364/280, 281.3, 281.7, 281.8

[56] References Cited
U.S. PATENT DOCUMENTS
5,371,887 12/1994 Yoshida et al. ..uccucricnriscrennnes 395/650
FOREIGN PATENT DOCUMENTS

473444A 3/1992 European Pat. Off. .
482815A 4/1992 European Pat. Off. .

OTHER PUBLICATIONS

ICASSP-92. D2EV, vol. 5, San Francisco, CA, US, pp.
549-552, L Kuroda, et al. “Asynchronous Multirate System

Microprocessing and Microprogramiming, vol. 28, No. 1/5,
Mars 1990, Amsterdam, NL, pp. 211-216, R. Cobelli, et al.
“Real Time Scheduling Algorithms and Their Perfor-
mances”.

Search Report, INPL, No 9311210000, Nov. 10, 1995.
Calingaert; Operating System Elements; Prentice~Hall,
1982.

Alijani, et al.; “A task scheduling Scheme for Real-Time
Multi-Robotics Systems”; Euromicro Workshop on Real
Time, 1991.

Primary Examiner—Thomas M. Heckler
Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor & Zaf-
man

[57] ABSTRACT

In a computer system having a digital signal processor for
processing tasks in real-time within a series of frames, a
method is described for determining whether there is enough
processing time available within each frame to process the
task such that the frame’s total processing time is not
exceeded. First, the task’s processing time requirement is
determined. The time for executing the current task list is
then calculated. Next, the remaining amount of processing
time available in the frame is determined. This is- accom-
plished by subtracting the current task list execution time
from the frame’s total processing time. The new task is
installed in the task list if the frame’s available processing
time is at least as great as the task’s required processing
time. Otherwise, the task is not instalied in the task list and
an error indication is generated.

Design For Programmable DSPs”. 36 Claims, 6 Drawing Sheets
to to ta tg
o
< 410 >l 411 >l 42—

400
R N 7
I Y I
I I
I DSP TASK : > DSP MODULE > DSP MODULE > DSP MODULE
! o1 04 405 406
I I
I I
I [
I [
I DSP TASK L_») DSPMODULE
! we| | 407
I I
| I
I I
| I
| DSP TASK : » DSP MODULE > DSP MODULE
! 03] 408 409
I I

-

U.S. Patent

May 6, 1997 Sheet lof 6
_______________________ |
]
BUS DSP CLOCK - SERIALIO
CONTROL 111 PRI

140 |* > 110 :
A |
|
]

FRAME CONTROL

SAMPLE CLOCKS
|
Y A\ Y :

BUS LOCAL e
INTERFACE MEMORY SERIAL

130 12 2 |
A '
|
|

e DT p—— | :‘\ 100
, |
| |
Y U | semactook | |
, |
BUS 150 , 1| |
X | |
| |
b

HOST
160

Fil= 1

5,628,013

TELECOM PORT
2]

SERIAL IO (" aUpIO PORT
! 122

U.S. Patent May 6, 1997 Sheet 2 of 6 5,628,013

|
| SEMAPHORES, DATA ETC. |
l

HOST APPLICATION/CLIENT DSP MODULE
201 210

Fmmm
, |
| |
: v v :
' DSP MANAGER DSP KERNEL SYSTEM I
| 202 211 |
|

| |
| |
| [
i [
| L A ¥ |
| |
| DSP HOST DRIVER DSP KERNEL DRIVER '
| ~ 204 212 |
| A A I
, |
| |
, |
| l
| ————X . |
| SHARED MEMORY | :
|

, l
l I
, |
| |
| |
| |
, |
, |

U.S. Patent May 6, 1997 Sheet 3 of 6 5,628,013

2
A
g o
= &
=
<€
-
<
; (o}
= \
Ly
=
=
L
1\
RO
- NN M
® 5 § ’
o S
L & Q(‘S}
gl | 4 NN & 8
= = OI 4§‘ QQ
- & N\ = -
2 L
) < SO
AN ,\0%@\ >
o @ O
i N Qg) (3'5
Z NN q}"%O@\
% & %«0’3’0 <<92\
s ¥
AN
2| IR
o /o™ QQ? Q)
= 0 ¥
™ \ Q @
o DN (\&co%
c 3 S
(N
NN

5,628,013

Sheet 4 of 6

May 6, 1997

U.S. Patent

907
TINAOW dSa

A

T =il

607
3INAOW d4Sd

A

<« ¢y

Sov
3INAOW dSa

A

_I|||||!.|
I
£ L [
3TNAOW dSA [ASV1 450
|
I
|
I
o7 L [
ANAON dSA [ASVL d4Sd
|
|
I
I
o7 L [
FINAON dSA e ASYL dSd
I
_ X
L

||||| |
Ny

Y

A

(4374

Y
A

187

5,628,013

Sheet 5 of 6

May 6, 1997

U.S. Patent

GPB ACTUAL

XY
NN

/ 500

AN\

-

NN

NN

ANIL ONISS3O0Hd 0

TIME

FIls_ ==

GPB ESTIMATE

/ 600

NN
R
XY

AN

XN
N
N

AN

<

NN

JNILL ONISS300Hd 0

TIME

FIls s

3

700
/ GPB ACTUAL

NN

RN\

AN

NN\

NN

NN\

NNNN

AN\

JNIL ONISS3D0Hd 0

TIME

| Bl | E-JY 4

|

il= "3

U.S. Patent May 6, 1997 Sheet 6 of 6 5,628,013
803 ON i
N\ i
DELAY_USE_ACTUAL_GPB OFF | orr 801
FRAME , ;
START ; ; 800
BOUNDARY ; i\ ON__
USE_ACTUAL_GPB __ OFF E 3
N o TIME
806 o
NEVAP N
gg 805 /1 808
807
EFiIl=_ =X
TELEPHONE STATUS SUB-BAND SUB-BAND
ANSWERING MODULE .| DECODER .| ENCODER
TASK MODULE MODULE
901 902 903 904
CONTROL PLAY

5.628,013

1

APPARATUS AND METHOD FOR
ALLOCATING PROCESSING TIME IN A
FRAME-BASED COMPUTER SYSTEM

FIELD OF THE INVENTION

The present invention pertains to the field of real-time
processing in frame-based processing computer systems.
More particularly, the present invention relates to an appa-
ratus and method for measuring and controlling execution
time in a frame-based computer system so that real-time
tasks from different applications can be dynamically sched-
uled without conflicts on the processing system.

BACKGROUND OF THE INVENTION

Time correlated data such as sounds, images, speech, etc.
are by their nature analog (i.e. continuous). However, com-
puters are, for the most part, digital (i.e. discrete). In order
for a digital computer to process analog signals. the analog
signals are first converted into digital signals which repre-
sent the analog signals. This is accomplished by repeatedly
sampling the analog signals in short time intervals and
converting each sampled value into a digital value. The
resulting digital signal can then be processed by the digital
computer. The processing of such digitized signals by a
computer is known as digital signal processing.

Presently, digital signal processing is being applied to
multimedia applications whereby text, audio, speech. video,
data communications, and other time cormrelated data are
integrated to create a more effective presentation of infor-
mation. However, handling these applications in a real-time
environment requires a large amount of processing power.
The computer’s Central Processing Unit (CPU) typically
does not have the requisite processing power. In order to
handle the load associated with operating these tasks in
real-time, one or more dedicated digital signal processors
(DSPs) are employed.

A DSP is designed to accept incoming samples at the
average rate that the samples are being generated by an input
process. The DSP then processes the input samples accord-
ing to a computer program and produces outgoing signals at
the average consumption rate of an output process. One
efficient method for performing real-time processing on a
DSP is known as frame-based processing. In frame-based
processing, time is divided into a series of discrete units
known as “frames,” within which all the required signal
processing for that frame is completed.

This is accomplished by dividing digital signals into
groups which represent the same amount of time as a frame.
For example, given that Compact Disc audio data runs at a
rate of 44,100 samples per second and assuming a frame rate
of 10 milliseconds (100 frames per second), there would be
441 samples per frame. During each frame, the correspond-
ing program code, variables, and input samples are loaded
into a high speed cache. From the cache, the input samples
are then processed according to the tasks. Finally, the
resulting output data is dumped into an output buffer to be
used by an output process.

In a frame-based architecture, each of the tasks is typi-
cally linked or associated with one another through a data
structure. An interrupt or other timing signal is generated
and sent to the DSP at the beginning of each frame. This
initiates the processing of the data structure, such that each
task is sequentially executed within a frame.

One of the advantages of frame-based processing is that
it reduces the task switching overhead. For example, given

10

15

20

25

30

35

50

55

60

65

2

four tasks each handling a sample stream of 44,100 samples
per second, if each task must be run once for every sample,
you have a total of 4*44,100 or 176400 task switches in.a
second. By implementing frame-based processing running
100 frames per second and given the same four tasks, each
of which run 100 times in a secord, requires only 400 task
switches per second. This reduces the task switching over-
head by a factor of 441.

One major drawback with a frame-based system is
increased latancy. A processing system that handles one
sample at a time can respond in the next sample to a change
in the input. In a frame-based system, a response takes two
frames. This is because data is collected in one frame,
processed in the next frame, and output in the following
frame.

Another problem with frame-based systems is that,
because each individual frame is of a fixed time duration,
there exists only a certain, finite amount of processing time
per frame. Consequently, when a number of tasks are being
processed in real-time, it must be ensured that the frame’s
processing time is not exceeded. Otherwise, the real-time
process will be disrupted in an unacceptable manner. Under
certain circumstances, a frame’s processing might be
exceeded when executing the tasks to be processed during
that frame. For instance, an unexpected aspect of one of the
task’s algorithms might cause that task to require more
processing time, resulting in a frame overrun. Another
example which might lead to a frame overrun is if a task is
sensitive to input data, and the data has been corrupted or
damaged. Indeed, an overloaded bus might deteriorate the
system performance to a point whereby a frame overrun
occurs. In some cases, such as debugging a program on a
line-by-line basis, frame overruns are inevitable. Sometimes
a task’s algorithm might operate properly 99.9% of the time,
but due to a defect, a particular command or data sequence
results in an endless loop or an inordinate increase in
processing time.

Ensuring that 100 percent of the frame’s processing is not
exceeded is relatively easy to implement if there is only one
application running a single task. When the application is
being written, the programmer can account for particular
tasks and adjust the processing accordingly. In contrast, if a
variety of multiple tasks are being installed and run by a
number of different applications, a serious problem arises in
determining whether there is enough processing power left
in a particular frame for handling subsequent applications
and/or tasks processing requests. Different hardware sub-
stantiations or configurations may also affect the processing
load.

Thus, what is needed is an apparatus and method for
determining 1) the processing time available within a frame
when an additional task is about to be installed and 2) the
worst-case processing time for that task. These two values
can be compared to guarantee that when a task is installed,
it can be fully executed within that frame. It would also be
beneficial for the apparatus and method to be simple to
implement, have low overhead, and also be dynamic (i.c.,
adaptive in real-time to the real environment).

SUMMARY AND OBJECTS OF THE
INVENTION

In view of the problems associated with frame-based
processing, one object of the present invention is to provide
an apparatus and method for allocating a frame’s processing
time so that the time required to process real-time tasks
associated with that frame does not exceed that frame’s total
processing time.

5,628,013

3

Another object of the present invention is to calculate the
worst-case processing time for a group of modules for a task
rather than simply adding together the processing times for
the individual modules.

Another object of the present invention is to provide
scaling vectors so that a piece of code can operate over
various instantiations.

Another object of the present invention is to implement a
frame-based allocation apparatus and method which is
dynamic (i.e., adaptive in real-time to the real environment).

The currently preferred embodiment of the present inven-
tion also includes a second task list. called the timeshare task
list. This task list is executed in any excess time within each
frame that is not required to execute the real-time task list.
This is referred to as timeshare processing. Another object of
the present invention is to determine whether an application
can be properly serviced on a timeshare basis.

These and other objects of the present invention are
implemented in a frame based computer system which
utilizes a digital signal processor for processing a plurality
of tasks in a real-time environment. When an application
requests that a particular task be processed in real-time, the
present invention determines whether there is enough pro-
cessing time available within each frame to process the task
such that the frame’s total processing time is not overrun.
This is accomplished by first determining the task’s pro-
cessing time. A task is constructed of one or more processing
modules. The task’s processing time is calculated by adding
together the time it takes to process the modules for a
worst-case utilization situation. A modules’ processing time
is either an actually measured processing time (as measured
by a timer) or an estimated processing time. Whether the
actual or estimated value is used depends on the type of
algorithm used in the module and the current status of the
module. The present invention categorizes algorithms into
three different types: smooth, smart-lumpy, and dumb-
lumpy.

Next. the real-time task list’s processing time is deter-
mined. The task list includes the tasks which have already
been installed and will be executed within the frame. The
task list’s processing time is determined by adding together
all the processing times of the installed tasks. The amount of
processing time available is calculated by subtracting the
task list processing time from the frame’s total available
processing for realtime. The additional task is installed in the
task list if the frame’s available processing time is sufficient
to handle the additional task’s processing requirement.
Otherwise, a signal is generated to indicate that the task
cannot be installed.

In addition, the present invention enhances the modular-
ization of digital signal processing functions for various
configurations by implementing scaling vectors. The scaling
vectors enable one module to function in multiple instan-
tiations. Furthermore, scaling vectors allow for a module’s
processing time to be dynamically varied, depending on the
availability of the frame’s processing time.

The present invention can also be used to aid in the
determination of whether a particular task is serviceable on
a timeshare basis.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 illustrates a computer system as may be utilized by
the preferred embodiment of the present invention.

20

25

30

35

40

45

50

55

65

4

FIG. 2 illustrates a software system architecture as may be
utilized by the preferred embodiment of the present inven-
tion.

FIG. 3 illustrates a sequence of frames including the
processing of a Sound Player task in one of the frames.

FIG. 4 illustrates a programming structure having tasks in
a task list and modules associated with each task.

FIG. 5 is a chart of the GPB Actual value for a particular
module.

FIG. 6 is a chart illustrating the GPB Estimate value for
a particular module.

FIG. 7 illustrates a smooth algorithm.

FIG. 8 illustrates the states of the UseActualGPB flag and
the DelayUseActualGPB flag in reference to the processing
of a smart-lumpy module.

FIG. 9 illustrates a Telephone Answering task comprised
of grouped modules.

DETAILED DESCRIPTION

A method and apparatus for handling the allocation of
real-time resources that is dynamic (i.e. adaptive to real-time
in a real environment) is described. In the following
description, for the purposes of explanation, numerous spe-
cific details such as register and buffer sizes, frequencies,
frame lengths, timer values, sample rates, scaling vectors,
GPB values, etc. are set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

Overview of a Computer System in the Preferred Embodi-
ment

Referring to FIG. 1, the processing system upon which the
preferred embodiment of the present invention may be
practiced is shown as 100. Apparatus 100 comprises a
processing unit 110 which is, in this embodiment, a digital
signal processor (DSP). For instance, 110 may be a
DSP3210 Digital® Signal Processor, available from Ameri-
can Telephone and Telegraph (AT&T) Microelectronics of
Allentown, Penn. DSP 110 is driven by a DSP clock 111
which provides a timing reference.

Processing system 119 is also coupled to an audio serial
DMA (direct memory access) circuit 120 which facilitates
transfers between a local memory 112 and/or information
transferred on bus 150. In some embodiments, there is no
local memory 112, so DMA circuit 120 may allow DMA
transfers on bus 150. This may include information trans-
ferred via bus 150 from a host processor circuitry 160,
and/or host processor memory (not shown). In addition,
audio serial DMA circuit 120 provides output to an audio
port such as 122 in a serial fashion as driven by a serial clock
121. DSP 110 is also coupled to a telecom port 112 for
transmission of serial and bit input/output information, such
as fax and/or computer data information transmitted over
telephone lines.

Processing system 100 further comprises a bus control
unit 140 which is coupled to DSP 110 and a bus interlace
circuit 130 which facilitates communication between appa-
ratus 100 and bus 150. Bus 150 may be either the computer
bus in which apparatus 100 is installed, or may be a host bus
coupled to a host processor 160. Bus 150 may be coupled to
other devices such as input/output units, memory, peripheral
interfaces (not shown) for providing various capabilities
within the system.

5,628,013

5

Processing system 100 shown in FIG. 1 may be imple-
mented as circuitry residing on a motherboard (main cir-
cuitry board) of a computer system or, in another
embodiment. it may be implemented as an expansion card
inserted into a slot in a computer system and thus commu-
nicate with host processor 160 over a communication bus
150. In one embodiment, host 160, bus 150, and processing
system 100 may be one of the Macintosh® family of
personal computers such as the Macintosh® I or Macin-
tosh® Quadras manufactured by Apple Computer, Inc. of
Cupertino, Calif. (Apple and Macintosh® are registered
trademarks of Apple Computer. Inc.). Host 160 may com-
prise one of the 68000 families of microprocessors, such as
the 68020, 68030, or 68040 manufactured by Motorola, Inc.
of Schaumburg, Il

It should be noted that the structure of processing system
100 is shown as one embodiment and is not necessary for
practicing the present invention. It should also be noted that
in another embodiment, a plurality of additional DSPs may
be coupled to a bus 150 such that a multiprocessing envi-
ronment may be employed to provide enhanced capabilities.
It will be appreciated by one skilled in the art that many
departures and modifications of the circuitry shown in FIG.
1 may be employed to practice the present invention.
Overview of the Software Architecture

The operating software for the preferred embodiment
works on a team processing basis. In particular, careful
attention is paid to the division of labor between the host
processor and the DSP. The overall system architecture is
illustrated in FIG. 2. A host application or client 201
interfaces with a DSP Manager 202. The host application or
client 201 represents either a specific application program or
a higher level toolbox that is being accessed by a host
application. The term client is commonly used to describe a
relationship between a resource and a resource requestor. In
this case. the resource being requested is the DSP processor.
A toolbox refers to a predefined set of callable routines that
carry out commonly used functions. Typically, such tool-
boxes are associated with a particular function (e.g. gener-
ating a graphical output). The host application may make use
of the DSP functionality either directly by accessing the DSP
Manager or through a higher level toolbox.

The DSP Manager 202 provides the host functionality
through which host DSP applications are developed and
controlled. The DSP Manager 202 further interfaces with a
DSP Host Driver 204. The DSP Host Driver 204 executes on
the host processor and provides specific hardware dependent
functionality required to interface with a particular DSP
processor and hardware implementation. The DSP Manager
202 further interfaces with a Shared Memory 218. The
Shared Memory 218 may be defined in either or both local
memory or main memory. Main memory is the system
DRAM. Local memory may reside on a plug-in card, or on
the main logic board, or may be defined as a portion of main
memory. It is through this Shared Memory 218 that the DSP
Manager 202 and the DSP Kernel 211 communicate.

In regards to the DSP processor, a DSP module 210
interfaces to the DSP Kernel 211. DSP module 210 repre-
sents a particular function or program that has been written
for the DSP processor. The DSP Kernel resides in a storage
location directly accessible by the DSP processor. The DSP
Kernel 211 interfaces to a DSP Kernel Driver 212 and
Shared Memory 218. The DSP Kernel Driver 212 contains
hardware dependant routines and resides in local or system
memory directly accessible by the DSP processor. The DSP
Kernel Driver 212 communicates to the DSP Host Driver
204 via the Shared Memory 218 and through direct inter-

10

15

20

25

30

35

40

45

50

55

60

65

6

rupts 219. The combination of the DSP Manager 202, DSP
Host Driver 204, Shared Memory 218, DSP Kernel 211, and
DSP Kernel Driver 212, comprises the DSP Operating
System 220.

Programming Structures

The programming environment of the currently preferred
embodiment of the present invention is comprised of three
basic structures: sections, modules, and tasks. The basic
structure for a DSP application is the section. A section
contains information concerning the DSP executable code,
data, variables, and input/output buffers. A number of sec-
tions are grouped together to form a module. Modules are
provided to the host programmer as a resource and are
loaded into a DSP task structure by using the DSP Manager.
A module contains information for linking modules together
and for controlling the execution of the module, thereby
enabling the DSP Manager and the DSP Kernel to perform
their functions.

Certain modules are grouped together to form tasks.
Frequently, a DSP task will contain only one DSP module.
The reason for forming a task is to place together in an
appropriate order and with appropriate I/O buffer
connections, all of the basic module functions required to
perform a particular job. A further reason is to insure that the
combined functions execute as a set, thereby providing
consistent execution results. Tasks and their respective mod-
ules are started and stopped as a unit, installed and removed
from the task list as a unit, and are built and connected to
data streams as a single unit. A task is constructed by the host
application programmer, using a series of calls to the DSP
Manager. These calls create the task structure, load and
connect modules in the desired arrangement, allocate the
required memory, and install the completed task onto the
DSP task list.

Guaranteed Processing Bandwidth

FIG. 3 illustrates an example of time being sliced into a
series of frames 311-315. Frame 313 is the current frame;
frames 311 and 312 are previous frames which have already
been executed; and frames 314 and 315 are future frames
which will be executed following the execution of frame
313. FIG. 3 also includes an example of a Sound Player task
consisting of modules 316-321. Frame 313 has been
enlarged to provide a more detailed view of the execution of
the Sound Player task. The Sound Player task’s modules
316-321 processes and mixes three channels of sound (e.g.
music, speech, and sound effects) by switching between five
different modules 316-321 to sequentialty process blocks of
data through different algorithms. A CD-XA decompressor
316 is used to decompress compressed music or compressed
speech. Next, a sub-band decoder 317 and an 8 to 24 kHz
sample rate converter 318 are used to process speech that
was compressed with telephone quality for a higher com-
pression factor, and then up-convert to the system transport
rate. A 22.2545 to 24 kHz sample rate converter is imple-
mented for processing sound effects recorded at a rate
different than the 24 kHz system rate. A 24 kHz audio mixer
320 is implemented to mix the three sound channels. Finally,
the sound is output to the speaker FIFO in 321. Before and
after each module execution, caching operations 323 with
context switching are performed.

It can be seen that the Sound Player task 316-321 uses
approximately half of frame 313. Other tasks could be run
in the time remaining 322 in frame 313. However, it must
first be determined whether each additional task can be
completely executed within frame 313. Hence, whenever a
client requests that a task be installed, the operating system
needs to determine whether there is enough time available to

5,628,013

7

process that additional task within the subsequent frames.
The present invention accomplishes this by implementing a
Guaranteed Processing Bandwidth (GPB) system.

The GPB system is comprised of a set of two registers and
three flags associated with each module. These registers and
flags pertain to and are stored with each module. The two
registers are the GPB Actual Register, which stores the GPB
Actual value, and the GPB Estimate Register. which stores
the GPB estimated value. The three flags are the UseActu-
alGPB flag, the DelayUseActual flag. and the DontCount-
ThisModule flag. The calculations of these values and how
the flags are set, as well as the functions and rationales
behind each of these registers and flags, are explained below.
GPB Actual Register

The GPB Actual Register is initialized with the value 0.
Whenever a module is run, the time required to process that
module is calculated. This is accomplished by implementing
a continually running timer. The timer is assumed to be
counting at a rate proportional to the basic instruction rate of
the processor (i.e., the DSP Clock 111 in FIG. 1 supplies the
clock for both the processor and the timer prescaler). Imme-
diately prior to the DSP Kernel beginning to process a
module, the timer value is read and saved. When the DSP
Kernel completes processing the module, the timer value is,
again, immediately read and saved, The difference between
the first timer value and the second timer value determines
the elapsed time required to process that first module. The
elapsed time includes all system activities such as caching
operations, I/O operations inherent in execution, set-up, the
execution of the module, bus accesses, any clean-up process
at the end (e.g. uncaching, saving back to memory, output
operations, etc.) In other words, the elapsed time is the total
time required to process that particular module. This actually
measured process time is stored in the GPB Actual Register.

By adding together tile processing times for each module
in the task list, the task list’s processing time can be
determined. FIG. 4 illustrates a typical programming struc-
ture wherein a task list 400 has tasks 401-403 ready for
execution. Task list 400 is used to identify tasks waiting for
execution. Task 401 is comprised of three modules 404-406.
Task 402 is comprised of a single module 407. Lastly, task
403 is comprised of the two modules 408 and 409. Each
module is comprised of sections (not shown).

The order of task execution is from top to bottom through
the task list (e.g. 401, next 402, followed by 403). The order
of module execution is from left to right. For example, with
respect to task 401, module 404 would be executed first,
followed by module 405, and finally module 406. The host
application program specifies whether a task is active. If a
task is not active, it is bypassed in the execution order.
Similarly, the execution of a specific module may be
bypassed by implementing a module skip mechanism.

Referring to FIG. 4, when the DSP Kernel starts execution
of task 401, the timer value, t,, is read and saved. At the end
of module 404, the timer value, t, is read and saved. The
difference in time between t, and t, is the elapsed time 410.
Elapsed time 410 is the time required to process module 404,
which also includes all system activities as described above.
When the DSP Kernel stops executing module 405, the timer
value is again read and saved. The elapsed time 411 (i.e.
t,—t,) is the time required to process module 405. At the
completion of module 406, the timer value is again read and
saved, ts. The elapsed time 412, between tg and t,, is the time
required to process module 406. The time required to
process task 401 is the cumulative times 410, 411, and 412.
This procedure can be repeated for tasks 402 and 403 to
determine the total processing time for task list 400. Note
that timer value t4 is the t, value for task 402.

10

15

20

25

30

35

40

45

50

55

65

8

If a task is inactive, the timing method described above
adds the processing time to skip over the inactive task into
the GPB value of the next module that executes. For
example, if task 402 was inactive, the value ts would end up
becoming the t, for task 403. Thus, the time to execute
module 408 would include the time to skip over the inactive
task 402. To avoid this, the start value used for a task should
be reloaded from the timer if the previous task is inactive,
rather than using the final value from the last module of the
previous active task. This process in effect does not count the
inactive task skip time. However, when the task is active. the
processing load will be substantially greater than when it is
inactive. The “inactive skip” processing time can thus be
assumed to be included as part of the active processing time.

Every time a module is processed, the above measuring
procedure is performed on that module to determine the time
required to process that module. The actual measured mod-
ule processing time is compared to the value in the GPB
Actual Register. The larger of these two values is stored in
the GPB Actual Register. This results in a peak detection
algorithm, wherein the maximum actual GPB used, includ-
ing bus and ¥/O variations, is maintained in the GPB Actual
Register. In other words, the GPB Actual value gives the
worst case processing time that is being used by that module,
up to that point in time.

FIG. 5 is a chart which illustrates the GPB Actual value
for a sample module. The y-axis is the measured actual
processing time used by a particular module. The x-axis
represents real time. The GPB Actual Register is initially
loaded with a value of 0. The module is processed a number
of times, as indicated by the shaded rectangles. Each time
the module is processed, the actual processing time is
compared with the value in the GPB Actual Register. If the
actual processing time is greater than the value in the GPB
Actual Register, the actual processing time replaces the
value in the GPB Actual Register. This results in a GPB
Actual value 500. Note that the GPB Actual value 500 is
updated after the latest value is computed and after the
module completes execution of that frame.

GPB Estimate Register

Each module also has an associated GPB Estimate Reg-
ister. The GPB Estimate Register is initially loaded with a
GPB Estimate value by the DSP programmer or by auto-
matic profiling tools. The GPB Estimate value is the esti-
mated maximum level of processing time that could be used
by that module. An estimated value is used because certain
portions of the processing time depend on bus latency and
other factors, such as different machines or implementations,
or even for the same machines when users reconfigure them
with optional add-in expansion cards. FIG. 6 is a chart which
illustrates the GPB Estimate value 600 for a particular
module. The GPB Estimate value can be determined
experimentally, calculated by the DSP tools, or profiled in
reference to a timer. :

In the currently preferred embodiment, the processing
times are measured as a function of instruction cycles. By
using DSP instruction cycles as the unit of measurement, the
execution time adjusts to the speed of the particular DSP
being used. For example, with 10 millisecond frames. 166,
666 cycles are available at 60 nanosecond instruction cycles
and 125,000 cycles are available for 80 nanosecond instruc-
tion cycles. Consequently, if a processor is operated at 60
nanosecond instruction cycles, instead of 80 nanosecond
instruction cycles, more instruction cycles would be avail-
able for that particular frame. The processing speed is
known by the DSP driver for that particular hardware
implementation. When the DSP Kernel is computing the

5,628,013

9

processing time available, it requests this information from
the DSP Driver and is factored into the calculations. The
values stored in the GPB Actual and GPB Estimate Registers
are in reference to processor instruction cycles. Thus, when
processing times are described, it is in reference to DSP
instruction cycles.

Algorithm Categories

The GPB Actual and GPB Estimate Registers are used
differently, depending on how the module’s algorithm is
categorized. Module algorithms are broken into three sepa-
rate categories: smooth. smart-lumpy, and dumb-lumpy. A
smooth algorithm is one that consistently takes approxi-
mately the same amount of time to execute per frame. The
discrepancies in execution times for different frames are due
to minor variations within the algorithm and also due to
variations outside the contro! of the algorithm, such as VO
processing handled by the DSP Kernel and bus overhead,
which varies depending on the amount of bus traffic. These
discrepancies should be kept to within a few percent in order
to qualify as a smooth algorithm. FIG. 7 illustrates a smooth
algorithm. Some examples of smooth algorithms include
algorithms for implementing Finite Input Response (FIR)
and Infinite Input Response (IR) filters, equalizers, echo
processors, etc. Generally, a smooth algorithm does some
fixed amount of processing with little or no decision making.

A lumpy algorithm is characterized by periods of height-
ened activity. A lumpy algorithm might use various amounts
of processing time for each frame. The processing time
varies depending on the data being processed. the status of
the function the module is processing, and other variables.
FIGS. 5 and 6 depict lumpy algorithms.

A smart-lJumpy algorithm is an algorithm which has the
ability to determine, programmatically, the instances when it
is executing code that results in its using maximum pro-
cessing time. An example of a smart-lumpy algorithm is a
multi-rate modem. A multi-rate modem has various stages,
such as initialization, setup, and data transfer. The maximum
processing time is usually associated with the steady state
data pump. In the preferred embodiment, when the maxi-
mum processing time situation occurs, the smart-lumpy
algorithm initiates a call to the DSP Kernel, which then sets
the UseActual GPB flag. The DSP Kernel does not actually
set this flag until the GPB calculations for that module are
completed. This aspect will be explained in greater detail
below.

A dumb-lumpy algorithm is an algorithm which does not
have the ability to determine, programmatically the
instances when it is executing code that will result in its
using maximum (or beyond maximum) processing time. An
example of a dumb-lumpy algorithm is analogous to a
Huffman decoder. A Huffman decoder takes longer to
decode certain types of bit streams than other types of bits
streams. The processing time can even grow unbounded in
the worst case scenario, where random noise is input. A
separate mechanism is provided to manage this type of
algorithm. In the preferred embodiment, this is handled by
adding two DSP Kernel calls—one to find out how much
processing time is alloted (via the GPB Estimate), and the
other to determine how much has already been used. It is
therefore up to the DSP programmer to ensure that the
dumb-lumpy module does not exceed its allocated process-
ing time.

How the GPB is Used

When a request is made to install a task in the real-time
task list, the DSP Manager determines whether there is
enough processing time available per frame at that time.
‘When an application calls the DSP Manager to request the

20

25

30

35

40

45

50

55

65

10

installation of a task, the current GPB available is calculated.
The determination is made by comparing the estimated
processing time for that task to the remaining processing
time available in the frame. The remaining processing time
is calculated by subtracting the GPB Actual or Estimate
values for the modules corresponding to tasks already
installed from the total processing time available for that
frame. If there is enough processing time available, the new
task will be installed. Otherwise, an error message will be
sent back to the application or client attempting to do the
installation and the task will not be installed. Optionally, the
DSP Manager may request GPB from its existing clients
first, and if any client returns GPB to the system, an error
message may be unnecessary.

The determination of whether to use the GPB Actual
value or the GPB Estimate value is described as follows. In
the case of smooth algorithms, the UseActualGPB flag is set
in the source code for the module. The initial state of the flag
is indicated in the module data structure. Since the UseAc-
tualGPB flag is set, the GPB Actual value is used as the
correct current processing time for the module. However, if
the GPB Actual value is zero, the GPB Estimate value is
used instead in the calculations. In other words, the GPB
Estimate value is used until the module has a chance to run
at least once. After that, the GPB Actual value is used,
irrespective of whether it is smaller or larger than the GPB
Estimate value. In the currently preferred embodiment, the
GPB Actual value is updated (peak algorithm) for a module
each time that particular module is executed. In this manner,
the GPB system adapts to different CPU configurations and
realtime variations, such as bus loading.

In the case of smart-lumpy algorithms, the UseActual-
GPB flag is not initially set because the GPB Actual value
is meaningless until the maximum processing time situation
is reached. Since the UseActualGPB flag is not yet set, the
GPB Estimate value is used as the correct current processing
time for this module. However, if the GPB Actual value is
larger than the GPB Estimate, the larger value is used. This
condition occurs whenever a module has not quite reached
its worst case but already has exceeded the estimate. When
a smart-lumpy algorithin determines that it has reached the
maximum processing time situation, it makes a call to the
DSP Kernel to set the DelayUseActualGPB flag.

The reason why a DelayUseActual GPB flag is required is
because if the DSP Manager happens to interrogate the GPB
values between the time the Kernel call is made by the DSP
module and when the latest GPB Actual is calculated at the
exit from the module, it will retrieve an erroneous GPB
Actual value. This is due to the fact that, at that instant in
time, the GPB Actual Register still contains the previously
stored actual value. The actual value for the current scenario
has not yet been updated.

Hence, a DelayUseActual flag is required. FIG. 8 illus-
trates how the UseActualGPB flag 800 and the DelayUse-
Actual flag 801 are used and set in reference to the process-
ing of a smart-lumpy module. Some length of time after
frame start boundary 803, the processing of a smart-lumpy
module begins at time 804. Processing continues until time
805. The DSP module calls the DSP Kernel to set the
UseActualGPB flag 800 at time 806. The call causes the
DelayUseActual flag 801 to be set. Note that the UseActu-
alGPB flag 800 is kept in the off state (not set). A short time
after the module has been processed, the GPB Actual value
is determined and stored in the GPB Actual Register at time
807. The DSP Kernel then checks the DelayUseActual flag
801 at a later time 808. If that flag is set, then the UseAc-
tualGPB flag 800 is set and the DelayUseActual flag 801 is

5,628,013

11

reset to the off state (not set). Thus, if the DSP Manager
happens to interrogate the GPB value in the middle, while
the module is being processed, the GPB Estimate value will
be used rather than an erroneous GPB Actual value (unless
the GPB Actual is already larger than the GPB Estimate).
Once the GPB Actual Register has been properly updated,
the GPB Actual value will then be used. This updated GPB
Actual value is used thereafter, and the value is additionally
updated if required by the previously described peak algo-
rithm.

An alternate method for handling the flag setting is to
require the DSP programmer to set the UseActual flag the
next frame after the maximum processing has occured, via
the Kernel call. This is functionally correct, but adds pro-
gramming burden to the DSP programmer, and increases the
potential for error.

As briefly described earlier, in the case of dumb-lumpy
algorithms. the algorithm makes two calls to the DSP
Kernel. One call fetches the expected processing time for
that module, which is stored in the GPB Estimate Register.
The other call fetches the amount of processing time which
has been used up to that instant. The algorithm compares
these two values. If the algorithm is close to exhausting its
allotted time, the module should execute its processing
termination procedure (€.g., aborts for this frame). This
procedure should end the processing in a manner appropriate
for that particular module. By repeatedly making the second
of these two calls, the algorithm is provided with informa-
tion to determine when it should terminate its execution.
Thus, a dumb-lumpy is required to manage its alloted
processing time itself.

If a dumb-lumpy overruns its allotted time, the GPB
Actual will exceed the GPB Estimate. This is actually a
fairly likely situation, in that the programmer can only make
an educated guess at how much time is required to complete
the context switch when exiting his module. As previously
described, this larger value will be used when computing
available GPB when another client wishes to install an
additional task. This guarantees that the additional context
switch time is included in future GPB availability calcula-
tions.

Thus, the calculation of remaining processing time pro-
ceeds by adding up all of the current processing require-
ments of each installed module as described, and subtracting
the total processing from the available frame processing.
Note that this calculation includes both active and inactive
tasks. This is necessary so that the required processing time
for inactive tasks is reserved for when they are activated.

Once a task and its related modules have been used for the
desired purpose and the application prepares to quit, the task
is unloaded from the task list, automatically returning its
GPB to the system for use by other modules. At this time,
smooth and smart-lumpy algorithms have a more accurate
GPB value stored in their GPB Actual register. This value
reflects the real execution time for the current environment.
The application can choose to update the module on disk
with this new actual value by storing it in the GPB Estimate,
effectively updating the estimate. This operation is per-
formed by the DSP Manager on request from the client.
Alternatively, the DSP Manager may automatically do this
for the client. However, there are drawbacks in this
approach, such as dealing with locked disk files; updating
applications with DSP resources in them which alters their
“modification” dates; or multiple users updating a shared
DSP resource on a file server.

In the preferred embodiment, a “preferences” file is
maintained by the DSP Manager on that particular systems

10

20

25

30

35

40

45

50

55

65

12

boot disk. Whenever a task is unloaded, any improved GPB
values in the modules within the task are written to the
preferences file. Whenever a module is loaded, the prefer-
ence file is checked to see if more accurate information is
available, which is used instead. This eliminates the prob-
lems associated with file servers and modification dates for
applications.

Note that the availability of an updated GPB Estimate in
the preferences file indicates that the module has been used
previously in this particular computer system. This also
indicates that the GPB Estimate has been adjusted to reflect
the performance of this computer system, and is therefore
significantly more accurate than the GPB Estimate in the
module file. This distinction can be utilized to reduce frame
overruns. In particular, the DSP Manager can add some
percentage to the GPB Estimate for a module if nothing is
found in the preferences file when comparing the estimate
and the available processing time. This extra margin can
reduce the likelihood of the estimate being too low for this
machine. Alternatively, this extra margin can be added only
if the remaining processing available is close to the required
processing as indicated by the estimate.

It is this update mechanism that provides the last step to
close the loop in the system, to make it truly an adaptive
system. Note that this process only has meaning for smooth
and smart lumpy modules. Dumb lumpy modules are
required to limit their processing to the estimated value
themselves.

Grouped Modules

The currently preferred embodiment of the present inven-
tion utilizes a component architecture approach, wherein
generic modules for performing generic functions can be
intercoupled to provide different functionalities. An example
of this building block approach is that of a telephone
answering machine, as shown in FIG. 9. The Telephone
Answering task 901 can be implemented by grouping
together standard modules 902-904. Status module 902
provides the status and controls functions such as detecting
rings, taking the phone line off-hook, hanging up the phone,
etc. Next, Sub-Band Decoder module 903 is used to provide
a player function for playing a greeting to the calier and for
playing back any recorded messages. The Sub-band Encoder
module 904 is used to provide a recorder function.

The Telephone Answering task 901 does not actually uses
all of its modules 902-904 simultaneously. For example,
when a message is being played, the recorder function is idle
and vice versa. Thus, calculating the GPB values for this
task by adding up the processing times for each module
would result in an over-estimation because not all modules
will be executed in the same frame. This would effectively
lock out real time processing bandwidth from other tasks,
which would never actually be used. For example, if the
GPB values for Status module 902 were 1,000 cycles;
Sub-band Decoder module 903 were 5,000 cycles; and
Sub-band Encoder module 904 were 6,000 cycles; this
results in a total GPB value of 12,000 cycles. The worst-case
situation is actually 7,000 cycles (Status module 902 plus
Sub-band Encoder module 904). Thus, Telephone Answer-
ing task 901 does not need an allocation of 12,000 cycles.
Rather 7,000 cycles is all that is required.

In order to make more efficient allocation of processing
time in this type of situation, the currently preferred embodi-
ment of the present invention utilizes a DontCountThisMod-
ule flag. When a request is made to determine the processing
time for a particular task, the DSP Manager checks each of
the task’s modules to determine whether this flag is set. If the
DontCountThisModule flag is set for a module, the GPB

5,628,013

13

value of that particular module is not included in the total
GPB value for that task. It is the responsibility of the client
installing the task to determine the worst case utilization of
the modules and to set the DontCountThisModule flags for
the relevant modules. Hence. in the example given above,
the DontCountThisModule flag is set for the Sub-band
Decoder module 903.

Note that if the programmer incorrectly uses the Dont-
CountThisModule flag, the GPB used by the task list will be
incorrectly calculated too low, allowing the installation of
additional tasks when none may be in fact desireable. In this
case. a frame overrun may result. One way of correcting this
problem is to maintain a GPB Actual register in the task
structure for a task-level check on the processing load. This
additional measurement allows better error correction and
recovery if this mistake was made by a programmer.
Scaling Vectors

Another aspect of the present invention which enhances
modularized DSP functions in various configurations is the
use of scaling vectors. Scaling vectors enable one module to
function in multiple instantiations. In other words, scaling
vectors enable generic modules to adapt to various buffer
sizes, sample rates, and frame rates. Various GPB values are
also implemented to correspond to the various instantiations.
For example, a module which has a GPB value of 5,000
cycles at a frame rate of 100 frames per second may require
only 2.700 cycles at 200 frames per second. Instead of
having to create a set of functionally identical modules for
each possible case, a single module can be implemented
with scaling vectors that allows it to be used in all of the
desired cases.

When a module is first programmed, the programmmer
determines the different ways that the module can conceiv-
ably be used and also determines the respective GPB values
for each different implementation. The programmer then
enumerates the possibilities as a list of scaling vectors. The
list is stored with the module. When an application attempts
to use the module a certain way, the loader determines, from
the module’s scaling vector list whether that module can be
used for that instantiation. The loader also selects the GPB
value for that instantiation.

A scaling vector is comprised of three values: a frame
rate, a scale factor, and a GPB value. The scale factor is used
to determine the size of scalable I/O buffers for a particular
module. Table 1 below illustrates some possible applications

for a 2-to-1 sample rate converter.
TABLE 1
100 frames/sec 24 kHz to 12 kHz
200 frames/sec 24 kHz to 12 kHz
100 frames/sec 8 kHz to 4 kHz
200 frames/sec 8 kHz to 4 kHz
100 frames/sec 16 kHz to 8 kHz
200 frames/sec 16 kHz to 8 kHz
100 frames/sec 48 kHz to 24 kHz
200 frames/sec 48 kHz to 24 kHz
100 frames/sec 32 kHz to 16 kHz
200 frames/sec 32 kHz to 16 kHz

Since this module is a 2-to-1 converter, the size of the
scalable input buffer in the source code should be set to 2,
and the scalable output buffer should be set to 1. Table 2,
shown below, gives the ten corresponding scaling vectors.

10

15

20

25

35

40

45

50

55

65

14
TABLE 2

100, 120, 5000 100 /s, scale = 120 for YO size of
240/120, GPB = 5000

200, 60, 2500 200 f/s, scale = 60 for I/O size of
120/60, GPB = 2500

100, 40, 1666 100 f/s, scale = 40 for VO size of
80/40, GPB = 1666

200, 20, 833 100 f/s, scale = 20 for /O size
40/20, GPB = 833

100, 80, 3333 100 f/s, scale = 80 for VO size of
160/80, GPB = 3333

200, 40, 1666 200 f/s, scale = 40 for VO size of
80/40, GPB = 1666

100, 240, 10000 100 f/s, scale = 240 for YO size of

480/240, GPB = 10000
200 f/s, scale = 120 for VO size of
240/120, GPB = 5000

200, 120, 5000

100, 160, 6666 100 f/s, scale = 160 for VO size of
320/160, GPB = 6666
200, 80, 3333 200 f/s, scale = 80 for VO size of

160/80, GPB = 3333

‘When an application requests that a module be loaded, a
call is made to the DSP Manager. One of the parameters
provided to the DSP Manager in the call is the scale factor.
The DSP’s current frame rate is provided automatically. If
there is a matching scaling vector, the module’s scalable I/O
Buffers are scaled appropriately, and the corresponding GPB
value is used. Note that a scalable buffer flag is included in
the buffer flags to indicate if scaling is to be performed. For
example, if the 200,80,333 vector is ¢hosen from Table 1,
then the ¥/O buffer sizes would be multiplied by 80, the scale
factor. This would make the input buffer (initially size 2) big
enough for 160 samples, and the output buffer (initially size
1) big enough for 80 samples—perfect for a 2/1 sample rate
convertor running at 200 frames per second and processing
32 KHz data.

If there is no matching scaling vector, an error is returned.
Note that the module algorithm requires knowledge of the
buffer size at run time to determine how much processing is
required. A DSP Kernel call or macro must be provided to
provide buffer size information to the module on request.

Table 2 indicates a simple, linear relationship between
buffer size (scale factor) and GPB. If this were really the
case, only a single value would be needed—the GPB per
unit of scale factor. In reality, the GPB value consists of a
certain amount related to loading and handling of the
module and its buffers and a processing load that is often, but
not always, a linear relationship to the O buffer size or
scale factor. Since the GPB values are related to the scale
factor in a more complex way, each of the GPB values in the
scaling vectors should be initially estimated as shown in
Table 2, and then more accurately measured in an actual
system with some form of profiler tool.

The GPB Estimate update technique described earlier (i.c.
the preference file) can also be supported with scaling
vectors. This is accomplished by the DSP Manager keeping
track of which scaling vector was being used, and updating
only the related GPB Estimate.

In an additional embodiment, for applications which do
not know the details of a module but which, nevertheless,
wish to use it as a generic building block, a DSP Manager
call is provided to retrieve information concerning the
module. The call can be used to select the desired scale
factor. The call returns the available input and output buffer
sizes at the current frame rate, and the scale factors. This list
is limited to scalable I/O buffers specified by the module
programmer. The application must make a selection based
on the required I/O buffer sizes. The associated scale factor
is then passed to the loader.

5,628,013

15
Dynamic Processing Time

The execution of certain programs could take all or a great
majority of a frame’s processing time under certain circum-
stances. Under other circumstances, these same programs
could take substantially less processing time to execute. The
currently preferred embodiment of the present invention
dynamically varies the processing time for a particular
module, depending upon the availability of the processing
time.

The present invention accomplishes this through the use
of the scaling vectors. When a module is written, the
programmer can generate, not just one, but a number of
various GPB values for a given frame rate and scale factor.
The different GPB values for the same frame rate and scale
factor represent different levels or modes by which that
particular module could be executed. Thus, when a module
desires more processing time, the application can make a
call to the DSP Manager to determine whether additional
time is available. If additional processing time is available,
a specific scaling vector having a larger GPB value can then
be selected and used by that module. Alternatively, the
scaling vector having the largest GPB value which could be
loaded (i.e.. fits into the available processing time)is selected
and used by that module.

A similar process is used to give up unneeded processing
time. Note that the application is responsible for informing
the module via Shared Memory when the GPB level is
changed. Likewise, the module can request a change of
processing by setting values in Shared Memory for the client
to read (polling mode) or send a message to the client
(interrupt mode). Thereby, a particular module can have
different execution levels, depending on the availability of
processing time.

In the preferred embodiment, a mechanism is established
between the module, the client, and the DSP Manager to
effect these GPB “mode” changes. This mechanism is com-
prised of a single 32-bit word in shared memory. The upper
16-bits is read/write for the host, and contains the desired
mode number. The lower 16-bits is read/write for the DSP,
and contains the current actual mode number. Both proces-
sors may read the entire 32-bit word.

At any given time, the desired mode can be set by the host,
assuming the proper GPB calculations have been preformed.
The DSP Manager can then query the actual mode, and
handle the mode change when the DSP module finally
makes the mode switch. Note that the mode change can be
instigated by either the DSP module (via a message to the
client) or by the client. In either case, it is the client that
actually makes the DSP Manager calls to effect the change.
It is then the responsibility of the DSP module to activate the
new mode when it reads the mode change in shared memory,
and to indicate when the mode change is complete by storing
the new mode number in the shared memory.

The mode change is accomplished by the client making a
call to the DSP Manager, specifying the desired mode
number. The DSP Manager fetches the GPB value for this
mode from the scaling vector, and determines if it is an
increase in GPB or a decrease. If a decrease is indicated, the
new mode number is set in the shared memory, and a
deferred task is set up to query the shared memory to detect
when the module has changed modes. The GPB Estimate is
changed to reflect the new, lower value. The GPB Actual is
left as is for the moment. Control is then returned to the
client. Under the control of the deferred task, the shared
memory is checked until the module makes the mode
change. When this takes place, the GPB Actual is saved for
use in updating the preference file later, and is set to zero.

10

15

20

25

30

35

40

45

50

55

65

16
This allows the new, lower GPB Actual value to be
computed, using the standard peak algorithm described
previously.

If a GPB increase is determined from the requested mode
change, than an internal DSP Manager call is made to
determine whether enough GPB is available to handle the
increase request. If there is sufficient GPB, the required GPB
is taken, and the GPB Estimate is revised upward, using the
value in the new mode’s scaling vector. The GPB Actual is
saved for updating the preference file at a later time. Control
is then returned to the client. If there is not enough GPB
available, the DSP Manager can request GPB from all
current clients. If a client gives up some of its GPB, and the
result is that sufficient GPB is now available, the process
completes as described. However, if there is no way to get
the needed GPB. then an error is returned to the client. The
current mode is therefore not changed.

Note that the format of the scaling vectors to handle
multiple modes is a simple extension of the basic scaling
vectors. The vectors can be arranged in any order, which
allows grouping by mode, by frame rate, or by sample rate,
depending on the programmer’s desire. There are alternate
methods for encoding the modes, which have some value,
but require additional intelligence in the tools. For example,
the scaling vector could be variable size, and contain the
frame rate, the scale factor, and a GPB mode count, followed
by that number of GPB values for the different modes. This
could make it easier for programmers to keep track of
modes. Alternatively, scaling vectors could have four values:
a mode number could be included with each vector. This
could potentially prevent some programmer €Irors.

The following example of a modem module illustrates
how its processing time can be dynamically varied, depend-
ing on the availability of processing time. Presently,
modems can operate over a wide range of different speeds—
for example, 1200 baud with V.22 to 9600 baud with V.32.
Furthermore, various other modem speeds also exist and
may be developed in the future. Generally, the faster the
operating speed, the more processing time is required. In
other words, the modem module requires more processing
time to handle a V.32 call versus a V.22 call. Hence, the
modem module can have various GPB values, depending on
the desired operating speed. The different GPB values are
reflected in the scaling vectors for the modem module. Table
3 shows five different GPB values which correspond to five
different operating speeds, given a frame rate of 100 frames/
second and a scale factor of 20.

TABLE 3

Operating Speed Frame Rate Scale Factor GPB Value
V22 100 20 4000
V.22 bis 100 20 4500
V.29 fax 100 20 7000
V32 100 20 9000
V.32 bis 100 20 9500

Supposing that the modem module is initially set up with
a minimum requirement to operate on V.22 (GPB of 4000
cycles). When the phone rings, the modem module requests
additional processing time in case the incoming call is V.32

bis (GPB of 9500 cycles). It does this by sending a message
to the modem client. The client requests the mode change by
calling the DSP Manager. The DSP Manager looks up the
new mode’s vector, and determines that an additional 5500
GPB cycles are required to switch to that mode. It then
determines whether the extra 5500 cycles are available. If
the additional processing time is available, the modem

5,628,013

17
module is notified via shared memory and implements the
scaling vector corresponding to V.32 bis: 100,20,9500. The
DSP Manager takes care of the GPB Estimates and GPB
Actual values, as described earlier.

18

time for the entire module is determined by adding together
the times for each type of memory reference. This estimated
processing time is then comverted into a GPB value by
dividing it with a real-time/GPB ratio.

The modem module now has a GPB value of 9500 rather 5
than 4000. The phone is answered. If the incoming call Table 4 below illustrates an example of deriving a GPB
happens to be V.32 bis, the modem module has enough Estimate value based on this type of scaling vector.

TABLE 4
Memory Access Count (N;) Type of Memory Reference Access Time (ns)
N, = 10,000 Cache Memory 72
N, =205 Local Memory - Single 200
N; =117 Local Memory - Page or 150
Block Transfer
N, =82 System Memory - Single 1200
Ns =41 System Memory - Page or 1000
Block Transfer
20
processing time to handle the call. However, if the incoming Given a computer system having five different types of
call happens to be V.22 bis, the modem module falis back to memory references, the average access time for each type of
a GPB value of 4500 by implementing the V.22 bis scaling memory reference is determined. Note that other types of
vector: 100. 20, 4500. This is done by sending a message to computer systems can include additional types of memory
the modem client, which then requests the GPB change from ,5 references. For a particular module, the number of times that
the DSP Manager. After the incoming call has been module performs that type of memory reference is calcu-
completed, the modem module relinquishes the extra pro- lated (memory access count N,_g). The scaling vector now
cessing time using the same mechanism by reverting to the comprises seven numbers: the frame rate, the scaling factor,
V.22 scaling vector 100, 20. 4000. and N,_;. The total time for processing the module can be

Note that in this example, if insufficient GPB is available calculated based on the scaling vector as follows: (10,000 *
to shift above V.22, the modem answers the phone as a V.22 30 T2H(205 * 200)H117 * 150)4+(82 * 1200)H41 * 1000)=
modem, forcing any higher speed calling modem to fall back 917,950. Given a real-time/GPB ratio of 72, the GPB
to V.22. This process allows dynamic aliocation of DSP Estimate value for this particular module is 12,749. Note
resources. depending on the load at any given time from user that the ratio used is the counting rate of the timer, and
demands. usually equals the time of N; counts.

An alternative embodiment is to implement scaling vec- 35 One negative aspect of this alternative embodiment is that
tors for calculating a more accurate initial GPB Estimate even though the GPB Estimate value is initially more
value for a module. This results in a more accurate initial accurate, it cannot subsequently be updated based on GPB
GPB Estimate value. First, the Host Driver provides the Actual values: In other words, there is po feedback mecha-
hardware implementation data on transfer times (measured nism to close the loop. Thus, this alternative provides a more
in nanoseconds) required for different types of memory 40 accurate initial estimate but cannot adapt to additional
references. The access time is the average real-time duration changes introduced into the system by the user, such as
from the time a data request is made to the time the data is expansion cards, etc. The preferred embodiment ultimately
actually received and the transaction is terminated. Bus and results in a more accurate estimate.
memory performance is accounted for in the transfer time. Another alternative embodiment involves calculating the
Next, the number of memory accesses for each type of 45 GPB value for a particular module based on the following
memory reference for the module is determined. This can be equation: GPB=mx-+b, where “m” corresponds to the incre-
determined by one of three different methods. One method mental amount of time for each additional sample to be
is for the programmer to compute these numbers. processed, “x” is the number of samples, and “b” corre-

In an second method, the development hardware can sponds to the overhead time such as caching, context
actually count the number of times that each type of memory 50 switching, and program set up times. For a more accurate
reference is accessed by the module for a frame. In yet a GPB value, this alternative embodiment can also incorporate
third method, the time to perform one particular type of the scaling vector concept described in the previous alter-
memory reference can be slowed. The total time required to native embodiment. That is, different “m” and “b” values are
process the entire module with one type of memory refer- used corresponding to the different types of memory refer-
ence slowed is measured. The regular time (not slowed) for 55 ences. Since the scaling vector contains the number of
processing the entire module is subtracted. The resulting accesses for each type of memory reference, the total GPB
time differential is then divided by the difference between value for the module is the sum of the GPB values for each
the access time for one slowed access and one regular access type of memory reference (as calculated according to the
for that particular type of memory reference. The result formula given above: GPB=mx-+b). However, this alterna-
yields the number of accesses for that particular type of 60 tive embodiment is limited to modules having a relatively
memory reference for that module. This method is repeated linear processing load with respect to the number of samples
for each different type of memory reference. which are processed.

Once the numbers are known, the total time for each type Timeshare
of memory reference for the module can be calculated by In addition to processing tasks in real-time, the currently
multiplying the number of memory transfers of that particu- 65 preferred embodiment of the present invention processes

lar type by the time required to perform that particular type
of memory transfer. Afterwards, the estimated processing

tasks on a timeshare basis. Real-time tasks are those tasks
which are executed at regular intervals (i.e. each frame). In

5,628,013

19

contrast, timeshare tasks need not be executed every frame.
Some examples of tasks which can be processed on a
timeshare basis include compression of disk files, graphics,
animation, video decompression, etc.

Timeshare tasks are processed at the end of frames which
have processing time left over, after all of its real-time tasks
have already been processed. The amount of processing time
available for timeshare in a particular frame depends on how
many real-time tasks are being processed and their respec-
tive processing times. If the realtime tasks consume all the
processing time of a frame, no timeshare tasks can be
processed in that frame. On the other hand, if no real-time
tasks or minimal real-time tasks are being processed during
a particular frame, there would be a great deal of processing
time for timeshare tasks during that frame.

Before a task is to be processed on a timeshare basis. it
should first be determined whether that task can properly be
serviced on a timeshare basis, due to the fact that the total
timeshare available varies from frame to frame. The DSP
Kernel knows how much processing time is available per
frame, since it is computing the GPB Actuals for all of the
realtime tasks. The average total remaining (unused) real-
time available for use by timeshare may be computed as
follows: for each frame, recompute the average time remain-
ing after all real-time tasks have completed. A form of
moving average calculation is utilized, such as:

Average timeshare=previous average vatue * (0.9+current

frame value * 0.1.
This gives each new frame’s remaining time a 10% weight,
against a weight of 90% on the previous average. Alternate
averaging techniques can be used. Also, it is possible for the
DSP Manager to do this calculation by sampling the value
every n frames. While this may not be as accurate, it
simplifies the Kernel.

Since there may be a substantial context switching over-
head when switching between realtime and timeshare and
vise versa, this amount should be subtracted out to give a
more accurate value of real processing available. This value
should be provided by the Host Driver to the DSP Manager.
Note that the context switch overhead is the minimum
amount of time that must be available before any timeshare
tasks can be installed. Normally, if no timeshare tasks are
installed, all of the available frame time can be allocated by
realtime tasks. If there is still the minimum time available,
a timeshare task may be installed, otherwise an error will be
returned. Once there are tasks in timeshare, the realtime
allocation can never exceed the total time minus the mini-
mum required context switch time. In effect, installing the
first timeshare task allocates some of the processing band-
width for timeshare context switch. If all timeshare tasks are
removed, this time can be allocated to realtime tasks.

In addition to the average available timeshare processing,
the frequency of the timeshare task list execution is required.
I there are many tasks in the timeshare task list, execution
frequency for each task will be low. A measure of this can
be computed by calculating a moving average of the number
of frames required to completely process the timeshare list
once. This must be done each time through the timeshare
task list. The calculation could be done as follows:

frames used=ending frame number—starting frame num-

ber

Average frames used=previous average frames used *

0.9+current frames used* 0.1
Note that it is possible to have a “frames used” value of zero
for cases where few timeshare tasks are active or installed,
or where most of the processing time is available for
timeshare. This will result in an average frames used value

10

15

20

25

30

35

40

45

50

55

65

20

of less than 1.0. Other averaging methods may be used. The
average frames used value could aiternately be computed by
the DSP Manager by sampling the realtime and timeshare
frame numbers on a regular basis. This will be less accurate,
but reduces the Kernel complexity.

By using the average frames used and the average avail-
able timeshare processing per frame, the frequency in which
a new timeshare task will be executed can be computed as
follows:

current timeshare load=Average timeshare * Average
frames used

proposed timeshare load=current timeshare load+GPB
Estimate of task

computed frames used=proposed timeshare load/Average

timeshare

If the calculated “proposed” frames used is too high
(infrequent) for the desired function, the task should not be
installed in the timeshare list. Note that a timeshare client
must monitor the processing rate of its timeshare tasks
because change in the real-time load or in the timeshare task
list affects the amount of processing its timeshare task
receives. This process can be assisted by notifying a time-
share client whenever a new real-time task is added to the
task list. Another technique for monitoring timeshare pro-
cessing rate is for the client to request the timeshare frame
number from the DSP Manager. The number is incremented
once for each pass through the timeshare task list. Another
aid to timeshare management is to provide the unallocated
GPB value per frame in addition to the average timeshare
value described above. Since GPB can be allocated and not
used, the unallocated GPB is typically smaller than the
typical average actually available GPB. This number is used
to give a “worst case” computed frame rate as follows:

current timeshare load=Average timeshare * Average

timeshare frames used

proposed timeshare load=current timeshare load+GPB

Estimate of task
computed worst case frames used=proposed timeshare
load/unallocated GPB
The computation gives the frames used for timeshare
execution, assuming all real-time tasks are using their allot-
ted GPB.

When timeshare tasks are executing, it is necessary to
pre-empt execution for real-time tasks which must be pro-
cessed “on-time.” This is accomplished in the currently
preferred embodiment by interrupting timeshare execution
to run real-time. In such a case, the context of the timeshare
task is saved and then restored after real-time has completed.

If the context save and restore process takes a significant
time to complete (e.g., saving the cache and reloading the
cache in a cache-based processing system), this time should
be taken into consideration when allocating real-time. This
is the same overhead subtracted out from available time-
share processing, as described earlier. In particular, when the
real-time task list completes, a check is made of the timer to
determine whether them is enough time to restore and save
the timeshare process before the end of the frame. If there is
not enough time, timeshare processing is not restored for this
frame. Thus, in a heavily loaded system, timeshare execu-
tion can drop to zero.

An example of an alternative technique for managing
timeshare is to run timeshare modules only if the remaining
processing time available in a given frame exceeds the
required processing for the module (GPB Estimate and/or
GPB Actual). In such a case, the timeshare module should
complete execution prior to the end of the frame. Thus, no

5,628,013

21

timeshare module should “straddle” a frame boundary. If
this is done, the GPB Actual value is significant as in
realtime. This technique eliminates context save/restore
overhead but requires more processing for the executive
function in the DSP Kernel. Also, error recovery capability
must be provided, in case a timeshare module fails to
complete execution prior to the frame boundary. Note that
this technique requires that all modules run within a frame,
which could make programming more difficult for long tasks
(i.e.. the programmer manually breaks up execution in
chunks, rather than relying on the context switch process
doing it automatically).

Thus, in a computer system having a digital signal pro-
cessor for processing real-time tasks in a frame based
system. an apparatus and method for ensuring that the task
is executable within the frame such that the frame’s total
processing time is not exceeded if the task is processed
within that frame, is disclosed.

What is claimed is:

1. In a computer system having a processor for processing
data in real-time by executing at least one task during each
of a series of predetermined duration processing frames, a
computer implemented method for determining whether a
first task is executable within a particular predetermined
duration processing frame such that a total processing dura-
tion corresponding to said particular predetermined duration
processing frame is not exceeded if said task is processed
within said particular predetermined duration processing
frame, comprising the steps of:

determining a required processing duration for said first

task;
calculating a required processing duration for a set of
tasks in a task list, said set of tasks including at least
one second task designated for execution during said
particular predetermined duration processing frame,
said at least one second task included in said task list
for said particular predetermined duration processing
frame. said task list specifying at least said second task
to be executed in said particular predetermined duration
processing frame;
calculating an amount of processing time available in said
particular predetermined duration processing frame by
subtracting said required processing duration for said
set of tasks from said total processing duration; and

installing said first task in said task list if said amount of
processing time available is at least as great as said
required processing duration for said first task. other-
wise generating a signal indicating said first task cannot
be installed.

2. The method of claim 1 wherein said required process-
ing duration for said set of tasks is determined by adding
together processing durations for each installed task in said
task list.

3. The method of claim 2 wherein each task is comprised
of at least one module having a module’s processing dura-
tion.

4. The method of claim 3 wherein said processing dura-
tion for an installed task is calculated by determining a
worst-case utilization of said modules corresponding to said
task and adding together each module’s processing duration
for said worst-case utilization.

5. The method as in claim 3 further comprising the step of
implementing one or more scaling vectors corresponding to
said module for calculating said module’s processing
duration, said scaling vectors including a frame rate, a
scaling factor, and at least one memory access count(s)
corresponding to at least one type of memory reference.

15

20

25

30

45

50

55

65

22

6. The method of claim 3 further comprising the step of
implementing one or more scaling vectors corresponding to
said module for calculating said processing duration for said
module, wherein said module’s processing duration for said
module is determined according to the formula mx+b,
wherein m correspondence to an incremental amount of time
for processing an input sample, b corresponds to an over-
head time for said computer system, and x corresponds to a
number of samples to process, wherein said scaling vectors
include a frame rate, a scaling factor, and said values of m
and b.

7. The method of claim 3 wherein said module’s process-
ing duration is calculated in reference to said module’s type
of algorithm, wherein:

if said module comprises a smooth algorithm, said mod-

ule’s processing duration is an estimated processing
duration if an actual processing duration has not been
measured for said module, otherwise said module’s
processing duration is comprised of the actual process-
ing duration;

if said module comprises a smart-lumpy algorithm, said

module’s processing duration is comprised of the larger
of said estimated processing duration and actual pro-
cessing ‘duration if said task’s worst-case processing
duration situatior has not yet occurred, otherwise said
module’s processing duration is said actual processing
duration;

if said module comprises a dumb-lumpy algorithm, said

module’s processing duration is the larger of said
estimated processing duration or actual processing
duration for said module.

8. The method as in claim 7 wherein a processing allo-
cation of said module is varied dynamically, depending on
said availability of processing time within said particular
predetermined duration processing frame.

9. The method of claim 8 further comprising the step of
updating said actual processing duration when said task is
removed from said task list and storing said updated pro-
cessing duration in a storage means.

10. The method of claim 9, wherein said updated pro-
cessing duration is retrieved and utilized in calculating said
required processing duration for said set of tasks.

11. The method of claim 7 wherein said actual processing
duration for said module is measured by a timer.

12. The method of claim 11 wherein said module’s actual
processing duration measured by said timer includes related
system activities.

13. The method of claim 12 wherein said module’s
processing duration measured by said timer is measured in
reference to instruction cycles of said processor.

14. The method of claim 13 wherein if said module is
processed in a subsequent predetermined duration process-
ing frame which follows a prior predetermined duration
processing frame, a comparison is made between a prior
actual processing duration for said prior predetermined
duration processing frame and a subsequent actual process-
ing duration for said module during said subsequent prede-
termined duration processing frame, said actual processing
duration for said module is updated with the larger of these
two values.

15. The method as in claim 12 wherein a plurality of
scaling vectors corresponding to said module are
implemented, enabling said module to function in different
instantiations.

16. The method of claim 15 wherein said scaling vectors
include a frame rate, scale factor, and a processing band-
width value.

5,628,013

23

17. In a computer system wherein data is processed in
real-time by executing at least one task during each of a
series of predetermined duration processing frames, an
apparatus for ensuring that a first task can be completely
executed within a particular predetermined duration pro-
cessing frame such that a total processing duration for said
particular predetermined duration processing frame is not
exceeded. comprising;

a task list for specifying a set of tasks to be processed
during said particular predetermined duration process-
ing frame, said task list being stored in said computer
system;

a digital signal processor coupled to said computer system
for executing said task list; and

an operating system coupled to said computer system
which determines an available processing duration for
said particular predetermined duration processing
frame by subtracting an execution duration for execut-
ing said set of tasks from said total processing duration
for said particular predetermined duration processing
frame, wherein if said available processing duration is
at least as large as an execution duration for said first
task, said first task is included in said task list, other-
wise said first task is not included in said task list.

18. The apparatus of claim 17 further comprising a scaling
vector for calculating said execution duration for said first
task, said scaling vector including a frame rate, a scale
factor, and at least one memory access count corresponding
to at least one type of memory reference and wherein said
scaling vector being stored in said computer system.

19. The apparatus of claim 17 further comprising a scaling
vector for calculating said execution duration for said first
task. said scaling vector including a frame rate, a scale
factor. and values m and b, wherein said execution duration
for said first task is determined according to the formula
mx+b, wherein m correspondence to an incremental amount
of time for processing an input sample, b corresponds to an
overhead time for said computer system, and x corresponds
to a number of samples to process and wherein said scaling
vector being stored in said computer system.

20. The apparatus as in claim 17 further comprising a first
flag corresponding to each task in said task list, wherein the
state of said first flag determines whether said corresponding
task is active, wherein active tasks in said task list are
processed during said particular predetermined duration
processing frame when said task list is executed.

21. The apparatus as in claim 20 wherein said execution
duration for executing said set of tasks is determined by
adding together all processing durations for each task which
is installed in said task list.

22. The apparatus of claim 21 wherein each task is further
comprised of at least one module.

23. The apparatus of claim 22 further comprises a second
flag associated with said module which has a module’s
processing duration, the state of said second flag determin-
ing whether said module’s processing duration is to be
included in calculating said task’s processing duration,
wherein said task’s processing duration is the sum of the
total processing times for each module of said task as
determined by said second fiag.

24. The apparatus of claim 23 further comprising:

a first register associated with said module for storing said

module’s actually measured processing duration;

a second register associated with said module for storing
an estimated processing duration for said module;

a third flag which determines whether said first register
value represents the worst case of said module’s pro-

10

15

20

25

30

35

40

45

50

55

60

65

24

cessing duration, wherein the state of said first, second
and third flags depends upon said module’s algorithm.

25. The apparatus of claim 24 wherein said module’s
algorithm includes one of three types: smooth, smart-lumpy,
and dumpy-lumpy.

26. The apparatus of claim 25 further comprising a timer
for determining said module’s actual processing duration
including any related system activities.

27. The apparatus of claim 26 wherein said timer deter-
mines said module’s actual processing duration in reference
of an instruction cycle.

28. The apparatus of claim 27 wherein each time said
module is processed, said timer measures an actual process-
ing duration for said module, said first register is updated
with said actual processing duration if said actual processing
duration is larger than said first register’s current value,
otherwise said first register is not updated.

29. The apparatus of claim 28 further comprising a
plurality of scaling vectors associated with said module,
enabling said module to perform its function in a plurality of
instantiations.

30. The apparatus of claim 29 wherein said scaling
vectors include a frame rate, a scale factor, and a processing
value.

31. The apparatus of claim 30, wherein said estimated
processing duration of said module is derived from said
scaling vector.

32. The apparatus of claim 30 wherein said module’s
processing allocation is varied dynamically, depending on
said availability of processing time within said frame.

33. The apparatus of claim 32 further comprising a
storage means for storing updated processing durations.

34. The apparatus of claim 33 further comprises a means
for calculating said execution duration for executing said set
of tasks based on said updated processing durations in said
storage means.

35. In a computer system having a processor for process-
ing data by executing at least one task during each of a series
of predetermined duration processing frames, a computer
implemented method for determining whether a first task
can properly be serviced on a timeshare basis during said
series of predetermined duration processing frames, com-
prising the steps of:

determining a required processing duration for said task,

said first task comprising at least one module having a
module’s processing duration, said required processing
duration for said first task being calculated by deter-
mining a worst-case utilization of said at least one
module and adding together each module’s processing
duration corresponding to said worst-case utilization;

determining an amount of processing duration which is
available for timeshare processing per predetermined
duration processing frame;

computing a frequency of execution for timeshare pro-
cessing of said first task during said series of predeter-
mined duration processing frames; and

comparing said frequency of execution with a required
timeshare execution frequency for said task.

36. A method as in claim 35 further comprising:

instafling said first task in a list of timeshare tasks if said
frequency of execution is at least as large as said
required timeshare execution frequency for said first
task.

