US005761453A

United States Patent [(1] Patent Number: 5,761,453
Anderson et al. 1451 Date of Patent: Jun. 2, 1998
[54] METHOD AND SYSTEM FOR INCREASING 5452,432 9/1995 Macachorc.cieisisinnens 395/842
THE THROUGHPUT OF SERIAL DATA IN A 5495481 2/1996 Duckwallcocooeeeeveeersnssisonenn 370/85.2
COMPUTER SYSTEM Primary Examiner—Gopal C. Ray
[75] Inventors: Eric C. Anderson, San Jose; Scott F. Attorney, Agent, or Firm—Benman Collins & Sawyer
Fullam. Mountain View: Patricia A. 571 ABSTRACT
Scardino. Fremont, all of Calif.
A method and system provides for increasing the throughput
[73]1 Assignee: Apple Computer, Inc.. Cupertino. of serial data in a computer system when a data packet is of
Calif. unknown length. The method and system includes initializ-
_ ing a first count register to count a length field of the data
[21] Appl. No.: 568,542 packet. the length field including a value indication of the
. length of the data packet. The method and system further
[22] Filed: Dec. 7, 1995 includes storing a count for a minimum data portion in a
[51] Int. CLS GOGF 13/00 second count register and receiving the data packet from a
[52] US.CL .. 395/306: 395/842 serial device of the computer system. The method and
[58] Field of Search 305/842. 821 system further provides for transferring the length value to
395/200 07200012001330 6 280. 85 4j the RAM of the computer system and loading the count for
o o T 37.0/60. 04 1 the minimum data portion into the first count register to
N N provide primary chaining of the first count register to the
. second count register. The method and system finally pro-
561 References Cited vides for comparing a minimum data packet length to the
U.S. PATENT DOCUMENTS length value in the RAM to determine whether to utilize
4942515 7/1990 Marzucco et al. oo 395/842 sccondar){ chaining of the first count register with the second
5142628 8/1992 Okochi et al. ... - 395p0007 count register.
5,307,351
5,371,856 18 Claims, 10 Drawing Sheets

RECEIVE MIN + /

50

RECEIVE LENGTH /
FROM ADDRESS

51

INTCOUNT=2 |/

58

REMAINS DATA | | DMA_CHAIN_COUNT

66 l = (LENGTH - MIN) \
\ CLEAR DMA 54
™ CHANNEL rINTCOUNTF1 }\

52

58
RETURN

RETURN
58

53

POLL DMA CHANNEL UNTIL /
ALL BYTES RECEIVED

v 55

RECEIVE DATA FROM MEMORY /

U.S. Patent Jun. 2, 1998 Sheet 1 of 10 5,761,453
10
16 14
N Jal
17
CPU - /a4 3 RAM
21
DMA s
17
"
18 19 12
22 N Vad N
N D
o M
SERIAL A
DEVICE [*—* SCC ROM
I o
N
T 17
E
R
F
A
C
E

FIGURE 1

U.S. Patent

Jun. 2, 1998 Sheet 2 of 10

19

NN

INTERFACE LOGIC

24

A

DMA_COUNTER REGISTER

26

A

DMA_CHAIN_COUNT REGISTER

FIGURE 2

5,761,453

5,761,453

Sheet 3 of 10

Jun. 2, 1998

U.S. Patent

€ c ! HLONI HLON3]
31A8 V1va 31A9 Vivd 31A8 Vivd 13M0vd 13XOvd
gs7 gSW
v+ N 31Ag €+N31AQ Z+N31A8 L + N 3LAG N 31A9
A AN
SNIVINIY
NIN 6z 7V HLONT
8C

U.S. Patent Jun. 2, 1998 Sheet 4 of 10

RECEIVE 30
PACKET

'

DMA_COUNT = SIZE OF LENGTH FIELD /

5,761,453

32

34

DMA_CHAIN_COUNT = MIN DATA LENGTH

Y

;

36

DMA_ADDRESS = LOCATION TO STORE PACK

et |/

l

SETUP FOR DMA INTERRUPT /

l 42

INTCOUNT =0 4

l 44

ENABLE DMA /

FIGURE 4A

40

U.S. Patent Jun. 2, 1998 Sheet 5 of 10
46
DMA
INTERRUPT
48
50
Y
RECEIVE LENGTH /
FROM ADDRESS
N 52
Y
60 N
62
Y
INTCOUNT =2 e
58
N

A 4
CLEAR DMA CHANNEL |/

58
RETURN

RETURN

RECEIVE MIN + REMAINS DATA \
64

66

FIGURE 4B

5,761,453

54

y o~

DMA_CHAIN_COUNT
= (LENGTH - MIN)

l

INTCOUNT = 1

4

RETURN

56

58

U.S. Patent Jun. 2, 1998 Sheet 6 of 10 5,761,453

Receive DMA_Count and DMA_Chain_Count |70
Y
Receive DMA_Address to Start Storing Data Received |72
Y
Receive DMA_Enable -——74
A
Receive Length Field (Bytes = DMA_Count) -——76
Y
Generate SW interrupt -——78
\
Move DMA_Chain_Count to DMA_Count ——80
Y
Clear DMA_Chain_Count ——82
vy 4
g4 —| Receive Min Data Field Receive Min Data Field [84
(Bytes = DMA_Count) (Bytes = DMA_Count) —

86 —— Generate SW Interrupt | DMA_Chain_Count for
| Remains Data

88 | L_;_I _______

Generate SW Interrupt ——86

1
T |

¥ | Receive New i
]

[

__I

\ 4

Move DMA_Chain_Count to DMA_Count —90

) 4

Clear DMA_Chain_Count ——-02

Y

Receive Remains Data Field (Bytes = DMA_Count) ——-94

Generate SW Interrupt -——96

FIG. 5A D

U.S. Patent Jun. 2, 1998 Sheet 7 of 10 5,761,453

5
DATA PACKET

FIGURE 6

U.S. Patent Jun. 2, 1998 Sheet 8 of 10 5,761,453

DMA 46
INTERRUPT
48

RECEIVE LENGTH /
FROM ADDRESS

INTCOUNT =2

58
/ RETURN

RECEIVE MIN +
REMAINS DATA | | DMA_CHAIN_COUNT 1
66 l = (LENGTH - MIN)
\ CLEAR DMA v \ >4
—® CHANNEL INTCOUNT = 1 N
52

v 58

C RETURN)/ ETURN
58

POLL DMA CHANNEL UNTIL /
ALL BYTES RECEIVED [*

v 55

RECEIVE DATA FROM MEMORY e

FIGURE 7A

53

U.S. Patent Jun. 2, 1998 Sheet 9 of 10 5,761,453

o

RECEIVE DMA_COUNT AND DMA_CHAIN_COUNT

v 72
RECEIVE DMA_ADDRESS TO START STORING DATA RECEIVED ./

v 74
RECEIVE DMA_ENABLE |7
v 76
RECEIVE LENGTH FIELD (BYTES = DMA_COUNT) |/
v 78
GENERATE SW INTERRUPT |7
v 80
MOVE DMA_CHAIN_COUNT TO DMA_COUNT e
v 82
CLEAR DMA_CHAIN_COUNT .
¥

WAIT FOR BYTE RECEIVED | SW CLEAR
» OR SOFTWARE CLEAR

¢ BYTE RECEIVED

104

MOVE BYTE TO MEMORY LOCATION DMA ADDRESS L

106
INCREMENT DMA ADDRESS

v 108
DECREMENT DMA COUNT |

FIGURE 7B

5,761,453

Sheet 10 of 10

Jun. 2, 1998

U.S. Patent

8 3dNOIl4
< L
_ SNIVWIY I NIN [HLON3T =
uAOY | 2 !
_ dN13ST VWG | ¥344n8 | o —L— g —
20NN 2R 2R | v VY v v v v
Z=INI E_ NI 0=INI /)
VWA 31vadN OL MS HO4 LNIOd LSV YWA ON _ AHOW3N OL
Q3HIISNVL
\ \ AONILYT WNIIXYW _ viva
0zt zzl

5.761.453

1

METHOD AND SYSTEM FOR INCREASING
THE THROUGHPUT OF SERIAL DATA IN A
COMPUTER SYSTEM

FIELD OF THE INVENTION

The present invention relates genmerally to serial data
transfer in a computer system, and more particularly to
increasing the throughput of serial data in a computer
system.

BACKGROUND OF THE INVENTION

In many computer environments today, computers inter-
face with external, peripheral devices. such as modems.
scanners. and other computer systems. via a serial interface
at a serial input/output port. Typical components of com-
puter systems with serial device connections include a
central processing unit (CPU). random access memory
(RAM). read only memory (ROM). and a serial controller.
The RAM and ROM commonly store program information
and data for the system. while the serial controller usually
sends data to and receives data from the serial peripherals.

The serial controllers often reduce the amount of time the
CPU needs to spend servicing the peripherals and thus
reduce the amount of overhead these peripherals require, by
only interrupting the CPU when data has been received at
the controller or when the controller is ready to retrieve more
data to be sent. Although this scheme reduces the amount of
time spent ‘polling’ the peripheral by the CPU to determine
readiness of data reception or transmission. the CPU still
must service the serial controller, which correspondingly
causes other programs in operation by the CPU to be slowed.
Further. when the data transfer rate between the serial
controller and the CPU increases, these other programs are
increasingly slowed.

One attempt to reduce the amount of overhead time
associated with serial data transfer involves the use of a
direct memory access (DMA) system. The DMA system
typically includes a DMA interface coupled to the serial
controller and correspondingly. the RAM. and is setup by a
DMA channel in the CPU to handle the data transfers
between the memory and serial devices without any inter-
vention by the CPU. Usually, there is a programmable
number of bytes that the DMA system can handle transfer-
ring before interrupting the CPU to indicate the completion
of the transfer.

If the transferred data packets are of known length. then
the above-identified system works in an efficient manner.
However. when the data packets received are of unknown
length, the above system does not operate as efficiently. This
inefficiency occurs because. if the packet is of unknown
length, some mechanism is required that will provide the
length information to the DMA channel. This is typically
addressed in a conventional DMA system by sending a fixed
length data packet identified as a “send request” which
contains the length of the packet waiting to be sent. This is
then acknowledged with a known length packet. The CPU
then sets up the DMA channel to receive the packet of the
specified length. The problem with such a system is that the
DMA channel has no way of knowing when the packet is
complete unless the length of the packet is known ahead of
time. In so doing. a DMA system in accordance with this
method requires significant CPU overhead and wastes CPU
time and channel bandwidth,

Another method involves synchronous transfer. In this
case. a protocol, such as HDLC., automatically indicates the
end of a packet and an interrupt can be generated by the

10

15

20

25

30

35

45

50

55

65

2

serial channel when this occurs. In this case. typically the
DMA channel is programmed to receive the largest possible
packet. Thus. packet termination is signalled by the CPU via
the serial port interrupt, rather than a DMA channel inter-
rupt.

Accordingly. what is needed is a method and a system for
receiving asynchronous data packets of unknown length
without requiring such a handshaking scheme to reduce
CPU overhead and allow for efficient and complete transfer
of serial data to and from memory. The present invention
addresses such a need.

SUMMARY OF THE INVENTION

The present invention provides for a method and system
for increasing the throughput of serial data in a computer
system when a data packet is of unknown length. The
method and system includes initializing a first count register
to count a length field of the data packet, the length field
including a value indication of the length of the data packet.
The method and system further includes storing a count for
a minimum data portion in a second count register. Further.
the data packet is received from a serial device of the
computer system. The method and system further provides
for transferring the length field to the RAM of the computer
system and loading the count for the minimum data portion
into the first count register to provide primary chaining of
the first count register to the second count register. The
method and system finally provides for comparing a mini-
mum data packet length to the length value in the RAM to
determine whether to utilize secondary chaining of the first
count register with the second count register.

Through the use of a system in accordance with the
present invention. the amount of polling is substantially
eliminated and the CPU overhead is substantially reduced.
Therefore through the use of the present invention the
throughput of the system is maximized. In a preferred
embodiment, no polling would be required because the
minimum data packet size would be equal to the counts in
the two count registers. These and other advantages of the
aspects of the present invention will be more fully under-
stood in conjunction with the following detailed description
and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of a computer system
in accordance with the present invention.

FIG. 2 illustrates a block diagram of a portion of a DMA
channel in accordance with the present invention.

FIG. 3 illustrates portions of a serial data packet.

FIGS. 4(a). 4(b). and 5(a) are flow charts illustrating the
operation of a system in accordance with the present inven-
tion.

FIG. 6 illustrates a nine data byte packet that can be
processed by a system in accordance with the present
invention.

FIGS. 7(a) and 7(b) are flow charts illustrating the opera-
tion of a system in accordance with an alternate embodiment
of the present invention.

FIG. 8 illustrates an example of timing restraints for
avoiding data loss in an alternate aspect of the present
invention.

DETAILED DESCRIPTION

The present invention relates to an improvement in
receiving a data packet of unknown length in a processing

5.761.453

3

system. The following description is presented to enable one
of ordinary skill in the art to make and use the invention and
is provided in the context of a patent application and its
requirements. Various modifications to the preferred
embodiment and the generic principles and features
described herein will be readily apparent to those skilled in
the art. FIG. 1 illustrates a block diagram of a computer
system 10 in accordance with the present invention. The
computer system 10 includes a ROM 12 and RAM 14
coupled to a CPU 16 via a bus 17. CPU 16 is further coupled
to serial communications controller (SCC) 18. The CPU 16
further includes a DMA channel 21. The DMA channel 21
is in turn coupled to DMA interface 19. The DMA interface
19 is coupled to the ROM 12 and RAM 14 via bus 17. The
DMA interface 19 acts to handle data transactions between
RAM 14 and SCC 18 without intervention by the CPU 16.
The SCC 18 acts to send and receive serial data to/from
serial device 22. It should be appreciated that the DMA
interface 19 acts as an interface for the necessary handshak-
ing during data transfer between the serial communications
controller 18 and the RAM 14. The physical locations for the
DMA interface 19 include but are not limited to: in the CPU
16 in an embedded system. in a separate memory control
application specific integrated circuit (ASIC). and in the
SCC 18. as is well appreciated by those skilled in the art. The
DMA interface is only required if the SCC 18 does not have
appropriate control signalling to support the DMA function
directly.

One type of DMA channel 21 includes only a single
register to determine the length of an incoming data packet.
A second type of DMA channel 21 is a chained type of DMA
channel. In accordance with the present invention, a chained
DMA channel configuration is shown in FIG. 2. The DMA
channel 21 includes two count registers DMA__COUNT
register 24 and DMA__CHAIN__ COUNT register 26.

In this chained DMA channel configuration, the function
of the count registers 24 and 26 in accordance with the
present invention is to allow a minimum size of a data packet
to be received without polling. As before mentioned. the
DMA channel 21 interacts with DMA interface logic 19. The
interface logic 19 preferably includes control logic compo-
nents necessary for proper serial data transfer handling of a
data packet with RAM 14, as is well appreciated by those
skilled in the art.

An illustration of a data packet 28 is presented in FIG. 3.
An indication of the length of a data portion 29 of the data
packet 28 being received from serial device 22 (FIG. 1) is
preferably included in a length field of the data packet 28,
e.g.. the first two bytes of data with byte N. the most
significant byte (MSB). and byte N+1, the least significant
byte (LSB). respectively. The data bytes, bytes N+2, N+3.
N+4. and so on, of the data portion contain the serial data of
the data packet 28. For purposes of illustration with the
present invention. these data bytes are designated as separate
portions. such as bytes N+2 and N+3 representing a mini-
mum (Min) portion of the data packet 28, and byte N+4 and
beyond representing a remains portion of the data packet 28
beyond the minimum portion. Further. although the length
value in the length field has been described as a length of a
data portion of a data packet, it could also include the
number of bytes for the length field itself. Of course.
appropriate adjustments to the below-described arithmetic
operations would also be necessary to utilize proper primary
and secondary chaining.

The flow charts of FIG. 4(a). 4(b) and 5(a) illustrate more
particularly, preferred embodiments of the operation of the
two registers, DMA__COUNT register 24 and DMA__

15

30

35

45

50

65

4

CHAIN__COUNT register 26. in conjunction with the CPU
16. in accordance with the present invention. Preferably. the
method aspects as illustrated by the flow charts of FIGS.
4(a) and 4(b) are stored in the ROM 12 (FIG. 1). as is well
understood by those skilled in the art. Alternatively. of
course, the method may be stored and supplied on any
suitable computer storage medium. including an external
floppy disk and executed from RAM 14.

As shown in FIG. 4(a). the operation begins when the
CPU is ready to receive a data packet from a serial device
22, via step 30. The initialization of the DMA_COUNT
register 24 for counting the reception of a desired number of
bytes. e.g.. two, of incoming serial data occurs via step 32.
Of course, the number of bytes chosen for the initialization
of the DMA_COUNT register 24 is system and protocol
dependent. and preferably is equivalent to the length field.
i.e.. a number of bytes in a data packet that contain the length
of the data portion of the data packet. The DMA_CHAIN__
COUNT register 26 is then initialized to a minimum value.
for example. two, via step 34.

Referring back to FIG. 3. there is a 2 byte length field and
2 byte minimum (min) data portion and one byte remains
data portion. Accordingly, the DMA_CHAIN_ COUNT
register 26 is initialized to the minimum data portion of a
packet, in this case. two, as above described. In another
embodiment, the minimum data portion could, for example,
be set such that the DMA__CHAIN_COUNT register 26 is
initialized to the smallest value as defined by the interrupt
latency in the computer system, i.e.. to guarantee interrupt
service for the DMA channel 21 prior to receiving that
number of bytes.

The address for storing the packet in the RAM 14 (FIG.
1) is then specified. via step 36, and the setup for the DMA
interrupt occurs, via step 40. A variable for counting
interrupts, IntCount. is set to a zero value via step 42, and the
DMA is enabled via step 44 to complete the arming of the
DMA to await the receipt of the length and minimum data
of the data packet.

FIG. 4(b) illustrates one embodiment of an interrupt
routine for handling the DMA interrupts based on the order
of the interrupts received from the DMA. Of course, actual
implementation of the ideas expressed by this diagram may
vary upon need. The interrupts occur at designated points
during the receipt of the data packet, as described in more
detail with reference to FIG. 8. The handling routine begins
with receipt of an interrupt. via step 46. A determination of
whether the interrupt received is the first interrupt. ie..
whether the variable IntCount has a value of zero. is made
via step 48. When the interrupt is the first interrupt. the
length field, e.g.. the first two bytes, of the data packet has
been received, and the length value of the data packet. as
contained in the length data and stored in RAM 14 is
received, via step 50.

A determination of whether the length value is greater
than the length of the minimum portion, i.e.. the minimum
data packet length. of the data packet is made via step 52.
When the length value is greater than the minimum length.
the difference between the actual length and the minimum
length of the data packet is stored in the DMA_CHAIN__
COUNT register. via step 54. The variable IntCount is set to
one via step 56 before returning from the interrupt routine
via step 58.

Upon receipt of an interrupt via step 46, again a check of
the value of IntCount is made via step 48. Since the value is
now at one (via step 56). the routine continues via step 60.
The variable IntCount is then set to two via step 62. before

5.761.453

5

returning from the interrupt routine. Upon the receipt of
another interrupt via step 46. the IntCount value is now at
two. and thus the routine continues via step 64 with the
receipt of the entire packet. The DMA is cleared via step 66
before returning from the interrupt routine. When the length
value is not greater than the minimum length, i.e.. step 52 is
negative., the process continues via step 62. as described
above. Of course. in this situation, there is only the mini-
mum data and no remains data to be received in step 64. In
this case only two interrupts are received.

The generation of the interrupts with DMA channel 21 is
described with reference to the flow diagram of FIG. 5(a).
As shown in FIG. 5(a). the values for use with the DMA__
COUNT register 24 and DMA__CHAIN_ COUNT register
26 (set up via steps 32 and 34 of FIG. 4(a)). are received and
an address for storing the data is received. via steps 70 and
72. Although. these two receiving steps are presented in a
particular sequence. one of ordinary skill in the art readily
recognizes that these two steps could be interchanged and
that would be within the spirit and scope of the present
invention. The enable signal (provided in step 44, FIG. 4(a))
is received, via step 74. The receipt of the data packet then
begins with the receipt of the length field from the data
packet, via step 76, which in a preferred embodiment. is two
bytes.

Once the length field has been received. the count in the
DMA_ COUNT register 24 has been reduced to zero. and an
interrupt is generated. via step 78. The value from DMA__
CHAIN_COUNT register 26 is transferred to DMA__
COUNT register 24, via step 80. and the DMA_ CHAIN__
COUNT register 26 is cleared, via step 82. Thus, the count
of the minimum data portion is loaded from DMA_
CHAIN__COUNT register 26 into DMA_COUNT register
24 (i.e. a primary chaining of DMA__COUNT register 24
and DMA_CHAIN_ COUNT register 26 occurs) to allow
more serial data to be received.

It should be appreciated that although steps 78. 80. and 82
are shown as separate steps in the flow diagram of hardware
operations, they appear to the software as occurring sub-
stantially simultaneously.

The receipt of the data packet continues until the DMA_
COUNT register 24 has been reduced to zero, via step 84,
and an interrupt is generated. via step 86. At this point. the
routine of FIG. 4(b) preferably has determined whether the
data packet exceeds the minimum length (via step 52). When
the minimum length matches the actual length of the data
packet, the receipt of the data packet is finished, via step 88.

When the data packet is longer than the minimum length,
the DMA_CHAIN_COUNT register 26 preferably
receives the difference value (via step 54. FIG. (4(b)). while
the data packet data is being received via step 84, and before
an interrupt is generated upon completion. via step 86. When
the data packet length is greater than the minimum length,
the difference value stored in the DMA_CHAIN__ COUNT
register 26 is transferred to DMA_ COUNT register 24, via
step 90, to allow the remains of the data packet to be
received. Thus, secondary chaining of register DMA__
CHAIN__COUNT register 26 to DMA__COUNT register 24
occurs. and data transfer from the serial device 22 continues
until the transfer is complete.

The DMA_CHAIN_COUNT register 26 is cleared via
step 92, and the remains of the data packet is received until
the DMA__COUNT register 24 is reduced to zero. via step
94. An interrupt is generated upon completion of the receipt
of the data packet. via step 96. before the operation is
completed.

10

15

20

25

30

35

40

45

50

55

65

6

In a preferred embodiment, receiving the data (e.g.. steps
76. 84. or 94) occurs as presented in the flow diagram of
FIG. 5(a). Receipt of data begins in step 100. Upon receipt
of a complete byte via step 102, the byte of data is moved
to RAM 14 at the designated address location (set in step 36.
FIG. 4(a)). via step 104. The address location is updated,
such as by incrementing the address location to the next
address location, via step 106. The value in the DMA__
COUNT register 24 is then preferably decremented by one.
via step 108. A determination of whether the DMA__
COUNT register 24 has been decremented to zero is made
via step 110. The process of receiving a byte and transferring
to memory is repeated until the DMA__COUNT register 24
is reduced to zero. Of course. the address location could be
updated by decrementing. and DMA_COUNT may use
two’s complement counts and increment. as is understood
by those skilled in the art.

Thus. for example, in step 76. the DMA_ COUNT reg-
ister 24 is cleared after receipt of two bytes of data. i.c.. the
length field. In step 84, the DMA_COUNT register 24 is
next cleared after receipt of the minimum portion. e.g.. two
bytes. In step 94, the DMA__COUNT register 24 is finally
cleared after the remains of the data packet have been
received.

With the present invention. the length of the data portion
of the data packet being received is utilized to more effi-
ciently handle reception of serial data. Accordingly. the
chained data registers 24 and 26 utilize a difference value to
allow the DMA channel 21 to process an entire data packet
more efficiently.

Referring now to FIG. 6. a data packet is illustrated that
has an overall length of nine data bytes. As has before been
mentioned. in a preferred embodiment. the number of bytes
in the length field is not included in the value of the
minimum length. Thus. for example, if the system has a
length field of 4. and a minimum data packet length of 4. the
DMA__ COUNT register 24 will be initialized to receive the
first four data bytes for the length field. and the next 4 bytes
for the minimum portion will be set up for receipt through
initialization of the DMA__CHAIN__COUNT register 26 to
a value of four.

Through secondary chaining of the DMA_COUNT reg-
ister 24 and the DMA_CHAIN__COUNT register 26. the
last remains data bytes of the data portion will be received,
since the difference value of one between the actual length
of the data portion of the data packet. 5. and the minimum
length of the data packet. 4. is provided to the DMA
CHAIN_COUNT register 26. The receipt of this data
occurs with interrupts at the appropriate intervals, as above
described. With the present invention. the DMA channel 21
is able to continue to automatically handle a full data packet.
Such an ability to handle an entire data packet achieves a
maximum possible throughput, substantially eliminates
polling, and substantially reduces CPU overhead.

In another example, a situation where the minimum data
packet length exceeds the actual length of the data packet is
identified and handled. FIG. 7(a) is a flow diagram of the
operation of the present invention in terms of the DMA
interrupt handler routine. in which like numerals to FIG.
4(b) have been used to illustrate equivalent steps. As shown.
the alternate embodiment differs from that of FIG. 4(b) by
the inclusion of step 51. in which. after the length data is
received. a determination of whether the length of the data
packet is less than the minimum length is made. If so. the
operation continues with polling of the DMA until the entire
data packet is received, via step 53, as is well understood by

5.761.453

7

those skilled in the art. Data is received via step 55. and the
process continues with the clearing of the DMA channel. via
step 66, as described above with reference to FIG. 4(b).

FIG. 7(b) presents a flow diagram of an alternate embodi-
ment of the logic operations corresponding with the routine
of FIG. 7(a) for the situation when the data packet length is
less than the minimum length. The operation proceeds
similarly to that of FIG. 5(a) and thus. like steps are labelled
equivalently. Once the DMA__CHAIN_ COUNT register 26
has been cleared via step 82. the operation continues via step
83.

During and/or after step 83. the routine of FIG. 7(a)
preferably has determined that the data packet length is
shorter than the minimum length, via step 51. The logic
routine must then wait for receipt of a byte of data or a
software clear, via step 83. If a byte is received, the byte is
moved to memory via step 104. as described with reference
to FIG. 5(a). The operations then continue with the incre-
menting of the memory address and decrementing of the
DMA__COUNT register value, again as described above
with reference to FIG. 5(a). Since the packet is shorter than
the minimum length, the alternate embodiment waits for the
software clear signal to occur upon determination of the end
of packet via polling steps 53, 55. and 66 of FIG. 7A. Once
the clear signal is received (as produced by step 66. FIG.
7A). the operation is completed.

Further, during the interrupt handling routine. it may be
necessary to check for the running of the DMA channel 21
to determine if data has been received in buffers of the SCC
18 before the DMA_CHAIN_ COUNT register 26 has been
updated with the difference value. Such checking may be
necessary if there has been a delay for some reason in the
routine. and is appropriately done during step 54. FIG. 4(b).
If the DMA channel has already completed the minimum
transfer. the difference value must be stored in DMA__
CHAIN__COUNT and the DMA channel restarted. As long
as the maximum latency time of the controller has not been
exceeded, the DMA channel is suitably enabled to receive
the data in the buffers. as well as any additional data in the
data packet. Of course, preferably the minimum length has
been chosen to be large enough to avoid such problems with
the latency and to coincide with the real minimum length.

FIG. 8 illustrates an example 120 of the time restraints for
properly checking for a running DMA channel to avoid
losing data. As shown, length data for this example is
received in the first two bytes of data. A minimum length is
chosen as two, so that when an interrupt occurs (Int=0) the
next two bytes of data are also received. For illustrative
purposes. there are two buffers plus the receive shift register
in the SCC which can receive data after another interrupt
(Int=1) even though transferring data to RAM 14 will be
delayed. Thus. as long as the DMA running check is
performed and the DMA is restarted before the buffers are
full i.e.. before the maximum latency time has been
exceeded (indicated by 122), the data in the buffers. as well
as any additional data in the data packet, is properly
received.

With the system of the present invention. several advan-
tages over traditional polled (i.c.. non-DMA) and standard
DMA transfers are realized. In contrast to non-DMA
transfers. the present invention uses only two or three
interrupts, rather than one interrupt per byte. In contrast to
DMA transfers with handshaking that use send request,
acknowledge. and send data messages. in the present inven-
tion only one message is required. rather than the two
incoming and one outgoing of standard DMA transfers.

10

15

20

25

30

35

45

50

55

65

8

Although the present invention has been described in
accordance with the embodiments shown. one of ordinary
skill in the art will recognize that there could be variations
to the embodiment and those variations would be within the
spirit and scope of the present invention. For example,
although the initialization steps and decision steps in the
present invention are presented with a particular order. the
sequence of steps may be altered while achieving the
intended purposes of the present invention.

Accordingly, many modifications may be made by one of
ordinary skill without departing from the spirit and scope of
the present invention. the scope of which is defined by the
following claims.

We claim:

1. A method for increasing the throughput of serial data in
a computer system when a data packet is of unknown length,
the computer system including a central processing unit
(CPU). random access memory (RAM). read only memory
(ROM). and at least one serial device. the method compris-
ing:

(a) initializing a first count register to count a length field
of the data packet. the length field including a value
indication of the length of the data packet;

(b) initializing a second count register to store a prede-
termined count for a minimum data portion;

(c) receiving the data packet from at least one serial
device;

(d) transferring the length field to the RAM;

(e) loading the predetermined count for the minimum data
portion into the first count register to provide primary
chaining of the first count register to the second count
register; and

(f) comparing a minimum data packet length to the length
value of the length field in the RAM to determine
whether to utilize secondary chaining of the first count
register with the second count register.

2. The method of claim 1 wherein step (f) further com-
prises determining if the minimum data packet length is less
than the length value. wherein when the minimum data
packet length is less than the length value, a difference
between the minimum data packet length and the length
value is determined, the difference is stored in the second
count register, secondary chaining is utilized and the data
packet is transferred to RAM.

3. The method of claim 2 wherein step (f) further com-
prises determining if the minimum data packet length is
equal to the length value, wherein when the minimum data
packet length is equal to the length value. secondary chain-
ing is not utilized and the data packet is transferred to RAM.

4. The method of claim 3 wherein step (f) further com-
prises determining if the minimum data packet length is
greater than the length value. wherein when the minimum
data packet length is greater than the length value. secondary
chaining is not utilized. and the data packet is transferred to
RAM until the length value has been transferred as deter-
mined by polling.

5. The method of claim 1 wherein the length field is two
bytes.

6. The method of claim 1 wherein the length field is four
bytes.

7. The method of claim 1 wherein the minimum data
packet length comprises a byte value equivalent to a mini-
mum portion of the data packet and accounting for a latency
time of the CPU.

8. The method of claim 1 wherein the minimum data
packet length comprises a number of bytes of the minimum
portion and a remains portion of the data packet.

5.761.453

9

9. The method of claim 7 wherein the minimum data
packet length comprises a number of bytes of the length
field. the minimum portion, and a remains portion of the data
packet.

10. A DMA system for increasing the throughput of serial
data in a computer system when a data packet is of unknown
length. the computer system including a central processing
unit (CPU). random access memory (RAM). read only
memory (ROM), a serial communication controller (SCC).
and at least one serial device, the DMA system comprising:

interface logic, the interface logic controlling data transfer
of the data packet to the RAM. the data packet includ-
ing a value indication of data packet length;

a first count register coupled to the interface logic and
counting the transfer of the data packet; and

a second count register coupled to the first count register.
wherein the first count register and the second count
register are chained together to utilize a difference
value between the data packet length in the first count
register and a chosen value for a minimum data packet
length in the second count register to allow for
increased throughput in the transfer of the data packet
with the RAM.

11. The system of claim 10 wherein the first count register
counts a length field of the data packet indicating a length
value of the data packet transferred to the RAM.

12. The system of claim 11 wherein the second count
register transfers a count for a minimum data portion to the
first count register following the transfer of the length field.

13. The system of claim 12 wherein the CPU compares
the data packet length with the minimum data packet length.

14. The system of claim 13 wherein when the CPU
determines that the data packet length is greater than the
minimum data packet length. the difference value is utilized

15

20

25

30

10

and the CPU enables secondary chaining of the second count
register to the first count register.
15. The system of claim 14 wherein when the CPU
determines that the data packet length is equal to the
minimum data packet length, the difference value is not
utilized.
16. The system of claim 15 wherein when the CPU
determines that the data packet length is less than the
minimum data packet length, the difference value is not
utilized and the CPU polls the first count register to monitor
data packet transfer completion.
17. The system of claim 14 wherein the second count
register stores the difference value between the data packet
length and the minimum data packet length.
18. A computer-implemented method for increasing the
throughput of serial data in a computer system when a data
packet is of unknown length via program instructions stored
on a computer readable medium comprising;
initializing a first count register to count a length field of
the data packet. the length field including a value
indication of the length of the data packet;

initializing a second count register to store a predeter-
mined count for a minimum data portion;

receiving the data packet from at least one serial device;

transferring the length field to the RAM;
loading the count for the minimum data portion into the
first count register to provide primary chaining of the
first count register to the second count register; and

comparing a minimum data packet length to the length
value in the RAM to determine whether to utilize
secondary chaining of the first count register with the
second count register.

* % ¥ ¥ X

