US006212632B1

United States Patent

(12) (10) Patent No.: US 6,212,632 B1
Surine et al. @5) Date of Patent: Apr. 3, 2001
rimary Examiner—XKevin J. Teska
54) METHOD AND SYSTEM FOR EFFICIENTLY Primary Examiner—XKevin J. Tesk
REDUCING THE RAM FOOTPRINT OF Assistant Examiner—William D. Thomson
SOFTWARE EXECUTING ON AN (74) Attorney, Agent, or Firm—Sawyer Law Group LLP
EMBEDDED COMPUTER SYSTEM
(57) ABSTRACT
(75) Inventors: James W. Surine, San Francisco; Eric
Anderson, San Jose, both of CA (US) A method and system for efficiently managing the contents
. . of a volatile memory and a non volatile memory used by an
(73) Assignee: FlashPoint Technology, Inc., San Jose, .
CA (US) embedded computer system in order to reduce the amount of
volatile memory required by the embedded computer system
(*) Notice: Subject to any disclaimer, the term of this for operation. The embedded computer system includes a
patent is extended or adjusted under 35 processor coupled to the volatile and non-volatile memories
U.S.C. 154(b) by 0 days. via a bus. The volatile and non volatile memories store
21 Aopl. No.: 09/127.345 computer readable software for execution by the embedded
(21) Appl. No.: 09/127, computer system. When executed, the software causes the
(22) Filed: Jul. 31, 1998 embedded computer system to implement the method for
(51) Int. CL7 GO6F 9/00 efficiently managing the contents of the volatile and non-
) Q1 e, Sdwoat, Vol memoris, At power-p, boot code siored o the
348/232; 348/233; 711/170; 711/171; 711/173 po‘n‘-volatile memory 'is executed and begins instantiating the
(58) Field of Search 713/2, 100; 348/231, initial operating environment of the embedded computer
348/232, 233; 711/170, 171, 173; 707/205 system. A function pointer table is instantiated in the volatile
memory, wherein the function pointer table includes a
(56) References Cited plurality of entries for a corresponding plurality of instan-
U.S. PATENT DOCUMENTS tiated functions, wherein at least one entry is for operating
system code stored in the non-volatile memory. At least one
AR e bty WL i s decomprsd ot f e onsltl
5:6192698 471997 Lillich et al. ... 395710 memory and instantiated in volatile memory. The function
5734425 3/1998 T;k;;a;a it al. .. 348/231 pointer table is updated using a patch manager to incorporate
5,754,227 5/1998 Fukuoka 348/232 an entry for the high-use function(s). The operating system
5,790,856 8/1998 Lillich 395/703 code is executed from the non-volatile memory while the
5,794,010 8/1998 Worrell et al. . 395/500.41 high-use function is executed from the volatile memory. In
g’;gg’gjg . Sﬁggg]I:Imdhilm """""""""""""""" 333";7/22 so doing, an amount of volatile memory required by the
5:867:681 2/1999 Wl(l)rrrizlloet..;l.:....:... """"""""""" 712/208 embedded computer system is reduced while retaining a
5,926,208 * 7/1999 Noonen et al.ooccoorrrvere 34g/17 ~ speed benefit conferred by executing software from the
5,938,766 8/1999 Anderson et al. 713/100 volatile memory.
6,115,799 9/2000 OgAWA .ovovvvvvvevvererrerrrreenronen 711171
* cited by examiner 27 Claims, 11 Drawing Sheets
310 315
) J
T Lo K Tttt e boomooees 1
! ROM : i RAM E
z s | |
| H
| Boot i ‘| Capure |
WA Gk | | B [
i |
i 410 1 1
High-Use ' I Disol i
40234 Functions |1 i Bls%ay 415
| (compressed) | ! i utter i
] 1] I
: i Boot E : i
405—.| Patch ; : 1| Working [
05 | Manager |1 Time ‘| Memory | 420
1 1 : :
i 1 +]
i | Operating | t | High-Use |
403 stem | {| Functions [n—416
: ode : ! | (uncompressed)| !
1 1] |
i 1 1 I

U.S. Patent Apr. 3, 2001 Sheet 1 of 11 US 6,212,632 B1

181 182 183 LU
‘ {10 | Processor RAM 1/0 i
ROM Controlled Removable :
i Equipment Memory |
? 104 105 106 §

FIG. 1

(PRIOR ART)

U.S. Patent Apr. 3, 2001 Sheet 2 of 11 US 6,212,632 B1

102
]
r——=---- R 1
. RAM
, Capture i
| Buffer ?206
1(34 E Buffers /%\/205
 ROM | o §
| | ' | Working ||
2004 Boot | Memory [T—204
i1 Code 210 | |
e | e | Camera | !
201/U:/ omorgessed | TBi?.fl’;ﬁ{ S%/stgm 203
! ! : ode |

FIG. 2

(PRIOR ART)

U.S. Patent Apr. 3, 2001 Sheet 3 of 11 US 6,212,632 B1

§ 335 315 s W0
33 5 Processor RAM I/0 :
| ROM Imaging Removable :
| Device Memory :
§ 310 320 330 |

U.S. Patent Apr. 3, 2001 Sheet 4 of 11 US 6,212,632 B1

310 315
¥)
F~——"=7""= Ao A (—===—===- A - 1
| ROM | i RAM !
E Boot i ' Capture 5
401 /IK Code | i Buffer ’5“/414
| 410 | |
| High-Use [| Disol :
402—3{ Functions | | Blsif}ay 415
i | (compressed) | | | utter |
| Patch | Boot Workin i
405 " Manager | ! Time | Memor% A'\/ 120
' | Operating | ! ' High-Use '
403 stem | i | Functions [h— 416
5 ode i 5 (uncompressed) | !

US 6,212,632 Bl

Sheet 5 of 11

Apr. 3, 2001

U.S. Patent

315

L

526
510

-
|
]
|
1
|
]
|
|
1
|
]
f
!
i
|
’w4,
!
I
I
!
t
]
]
I
fﬁ4,
]
I
I
I
I
I
i
]
I
I
!
|
1
]
]
|
1
1
I
|
|
|
I
|
{
I
|
I
I
I
I
I
]
]
I
|
]
I
i
]
|
1
1
!
I
1
1
1
]
]
!
1
=

]
r r v T T T r T I
— 2, I
a1 S =g Nt “ | | " |
<t/ 1SS T - i | I | i
, [1 1 =] 1 I] 1
" I Sl] ' I | !
=2 I = = N i
e) L 1]] |]
MM 1 | = N = R R s R A =]
GRVWV_ 2 [R E O O © !
- pe— ll—l—
S/ E5I0T L& 58 181815 |
A t op ! | | S [e S Y e B B o B | [
o S = | TR = — e N = |
S Lo L=] [« B aon o I | oy ! 1
==12 5 |22 (7T |
1 i TS I I !
2NN - AR T A |
I mW I I mw | | I I ! “
AA| A A ."
|||||||||||||||||||||||| T e B R it
4\.)F\\)r|\w
v @
(=
e
W
(]
wN
\H\A‘S,. .\\Jf\\M
—‘4- T "
) o L2 i | m i _ | _ _ !
fem O o 1 I 1 | | ' ' (|
<+ 3 1Ty 1 1 | 1 | 1 t [\
f— I I 1 I I 1 " ! |
| t
! 5 “ L— 1 en n - ! = ! WW ! “
o 'Y P e e — = |
Z S| w2 I EL 1SS! g! ' E1 81! 8! i
ooooo [T e S T e S B B |
S/ =% EOo 21 BI85l L B 1818 !
(% 2 < <] 1 [=R T == R T e i | (= - - |
Sg| 85181 12122 BN |
A nrmw [== | P~ | P | - i e S = i
MM O WW RS 1 I] ' i | I i _
NN = | i | " " i ! | _
=i S R B N S R N |

II

FIG. 5

U.S. Patent

Apr. 3, 2001

Sheet 6 of 11

510

s

601 —

Function Pointer Table

Function 1 Address
Function 2 Address 2
Function 3 Address 3
Function X Address X
Function Y Address 7
Function Z Address Y

FIG. 6

US 6,212,632 Bl

US 6,212,632 Bl

Sheet 7 of 11

Apr. 3, 2001

U.S. Patent

aseq

BERIAIA
uoreINgIyuo)
KIOWaN

passaidwodun
anyde)

(passazduwooun)

fejd %
MITASY

1ayng Aejdsi(g

KIOWI
SunyIopm

Japng Aejdsiq

e e e e - e — e "2

J

(.

8L

d. "DIA

aseq

193RUBIA
uoIeINgIJuo))
AIOWAN

passaidwoaun
ayde)

RNy
amden

KIOWIN
SunyIopm

1apng Kejdsiq

VL DId

w 01L-7 3popoog
| L g
| (passaduwoo)
A 0¢L 71 amde)
m (passardwiod)
18 0L ey
“ ! MIIAYY
m
| 0pL | saomosay
| oY
J |A ||||||
r
0T¢

R e |

U.S. Patent Apr. 3, 2001

Sheet 8 of 11

800

US 6,212,632 Bl

Power-up the digital camera

—— 801

A

y

Execute boot code from ROM

—— 802

Set up the functi

on pointer table

—— 803

A

y

Execute patch manager code from ROM

—— 804

y

Decompress high

use functions out

of ROM and instantiate in RAM

—— 803

\

y

Update the function pointer table
and link the high use functions

—— 8006

\

Set up the initial software environment

—_— 807

\

program for the

Operate as an integrated software control

digital camera

—— 808

FIG. 8

U.S. Patent

Apr. 3, 2001

Sheet 9 of 11 US 6,212,632 Bl

900

Power-up the digital camera

——901

A

Execute boot code from ROM

——902

A

Set up the function pointer table

——903

Y

Set up the initial software environment

—— 904

\

Instantiate the memory configuration manager in RAM

——905

A

Instantiate base software in RAM

——906

A

Operate as an integrated software control

program for the digital camera

——907

_</

Y

\

Is there a change in the operating mode?

A

y908

Finish processing the software for the old mode

——909

A

Decompress the software for the new mode
out of ROM and instantiate in RAM

——910

A

Update the function pointer table to link the software for
the new mode and de-link any removed software

|

FI1G. 9

U.S. Patent

1000

Apr. 3, 2001 Sheet 10 of 11

US 6,212,632 Bl

Receive an external signal to change from
capture mode to review & play mode

/14’1001

A

Finish fprocessing the capture
buffer for capture mode

——— 1002

\

Decompress the review and play mode
software out of ROM and instantiate
in the RAM address space previously

used for the capture buffer

A

Update the function pointer table and link
the review & play mode software

— 1004

\

Execute the review & play mode
software on the digital camera

—— 1005

FIG. 10A

U.S. Patent Apr. 3, 2001 Sheet 11 of 11

1050

US 6,212,632 Bl

Recieve an external signal to change from
review & play mode to capture mode

Y

Finish E)rocessmg the review
& play mode software

— 10352

Update the function pointer table to de-link
the review and play mode software

Execute the capture mode
software on the digital camera

— 1054

A

Use the RAM address space rev1ously
occupied by the review g a
mode software as a capture buffer

— 1055

FI1G. 10B

US 6,212,632 B1

1

METHOD AND SYSTEM FOR EFFICIENTLY
REDUCING THE RAM FOOTPRINT OF
SOFTWARE EXECUTING ON AN
EMBEDDED COMPUTER SYSTEM

FIELD OF THE INVENTION

The field of the present invention pertains to devices
having embedded digital computer systems. A digital image
capture device is one example of such a system. More
particularly, the present invention relates to a method and
system for efficiently managing and executing software for
an embedded computer system of a device.

BACKGROUND OF THE INVENTION

Many consumer electronic devices common to everyday
use derive much of their utility from the manner in which
they interact with users and the manner in which they
implement their function. Users have become quite accus-
tomed to intelligent devices and machines and their ease of
use and functionality. Increasingly, an embedded digital
processing system underlies this ease of use and functional
capability. These systems are referred to as embedded
because, unlike a discreet, stand-alone digital processing
system (e.g., a personal computer), they are usually dedi-
cated to a specific set of related functions as opposed to
being general purpose. An embedded digital processing
system of a device executes software code designed spe-
cifically for implementing the functionality of the device.

An embedded digital processing system (hereinafter
embedded system) is usually considered an integral part of
the device in which it is included. Within more complex
devices, there may be a very powerful embedded system,
capable of executing many of millions of instructions per
second. A modern digital camera is one example of such a
device.

Atypical modern digital camera is very similar in size and
behavior to conventional point-and-shoot cameras. The digi-
tal camera usually includes an imaging device, user interface
displays, mode control indicators, and the like, which are
controlled by an embedded system running a software
program. When an image is captured, the imaging device is
exposed to light and generates raw image data representing
the image, the embedded system compresses the image, and
the image is stored in memory for archiving or later review:
The digital camera supports many different functions and
many different operating modes for capturing images,
reviewing images, and the like. Each of these functions and
modes is implemented by the specialized hardware of the
digital camera and specific specialized software functions
executing on the digital camera’s embedded system.

Prior Art FIG. 1 shows a typical embedded system 100.
Embedded system 100 includes a processor 101, a RAM
(random access memory) 102, an I/O (input-output) unit
103, a ROM (read only memory) 104, controlled equipment
105, and a removable memory 106, ecach respectively
coupled via a bus 110.

The functionality and operating characteristics of embed-
ded system 100 are largely determined by processor 101 and
controlled equipment 105, as processor 101 executes soft-
ware stored in ROM 104 and RAM 102 and controls the
operation of controlled equipment 105. For example, in the
case of a digital camera, controlled equipment 105 would
include a digital imaging device, mode control indicators,
user interface displays, and the like.

Referring now to Prior Art FIG. 2, a memory diagram of
the software contents of ROM 104 and RAM 102 is shown.

10

15

25

35

40

45

50

55

60

65

2

Typically, as shown in FIG. 2, the camera system code 203
(e.g., operating system software and its associated data
structures, resources, etc.) is stored as compressed code 201
in non-volatile ROM 104. At boot time, or power-up, boot
code 202 executes, decompresses compressed code 201 into
camera system code 203 and loads camera system code 203
into RAM 102. Boot code 202 also sets up and initializes
working memory area 204, buffers 205 (e.g., typically
comprising a display buffer and a draw buffer), and a capture
buffer 206.

Most digital cameras execute their operating system soft-
ware from ROM. This provides the advantage of conserving
the amount of RAM needed for nominal functionality.
However, for speed and responsiveness reasons, the more
performance-oriented digital cameras are configured to run
their operating system software (e.g., camera system code
203) from RAM 102 as opposed to ROM 104. This is due
to the fact that RAM (e.g., SDRAM, DRAM, EDO RAM)
is much faster than ROM or EEPROM. RAM, however, is
volatile, and therefore does not maintain its contents after
power-off. Consequently, these digital cameras and other
performance-oriented types of embedded system consumer
electronic devices transfer a compressed image of their
system code from a non-volatile ROM to a faster RAM at
power up. The system code then executes from RAM.

There is a problem, however, in the fact that, while faster,
RAM is more expensive than ROM. As modern consumer
electronics devices increase in functionality and
sophistication, even the most inexpensive device will
include one or more embedded systems to enhance the
interface with the user or to accomplish more elaborate
functions. Hence, it becomes important to reduce the cost of
these embedded systems as much as possible.

Thus, what is required is a method and system for
implementing complex functionality in a consumer electron-
ics device as inexpensively as possible. What is needed is a
system which reduces the amount of expensive RAM
needed in the embedded system of a device. The required
system should maintain the speed and responsiveness while
reducing the amount of RAM used in the device. The present
invention provides a novel solution to the above require-
ments.

SUMMARY OF THE INVENTION

The present invention provides a method and system for
implementing complex functionality in a consumer electron-
ics device inexpensively. The present invention provides a
system which reduces the amount of expensive RAM
needed in the embedded system of a device. Additionally,
the system of the present invention maintains the speed and
responsiveness of the device while reducing the amount of
RAM used in the device. In comparison to prior art embed-
ded system devices, a device in accordance with the present
invention either uses less RAM and is thus less expensive,
or runs faster using the same amount of RAM.

In one embodiment, the method of the present invention
efficiently manages the contents of a volatile RAM and a non
volatile ROM used by an embedded system in order to
reduce the amount of RAM required by the embedded
system for operation. The embedded system includes a
processor coupled to the RAM and ROM via a bus. The
RAM and ROM both store computer readable software for
execution by the embedded system. When executed, the
software causes the embedded system to implement the
method of the present invention.

At power-up, boot code stored in the ROM is executed
and begins instantiating the initial operating environment of

US 6,212,632 B1

3

the embedded system. A function pointer table is instantiated
in the RAM. The function pointer table has entries, or
function pointers, for each instantiated function such that
they can each call each other and pass execution. The
function pointer table has entries for functions which are
instantiated in ROM and entries for functions which are
instantiated in RAM. In accordance with the present
invention, a set of high-use functions are decompressed out
of ROM and instantiated in RAM using a patch manager.
The high-use functions comprise those functions which
account for a disproportionately high amount of processor
execution time and are typically a small subset of code in
comparison to the aggregate code of the embedded system.
The present invention utilizes this characteristic advanta-
geously by instantiating these functions in the much faster
RAM. The patch manager subsequently updates the function
pointer table to incorporate an entry for the high-use
functions, thereby linking the high-use functions with the
rest of the instantiated functions. The operating system code
is then executed from the ROM while the high-use functions
are executed from the RAM. In so doing, an amount of RAM
required by the embedded system is reduced while retaining
a speed benefit conferred by executing software from the
RAM.

In an alternate embodiment of the present invention, the
address space of the embedded system’s RAM is dynami-
cally allocated by a memory configuration manager to
functions on an as-needed basis. In this embodiment, in
addition to instantiating certain high-use functions, a
memory configuration manager decompresses new software
functions out of ROM, instantiates them in RAM, and
updates the function pointer table to link them dynamically,
as the capability of the new software functions are needed.
Thus, for example, as the embedded computer system
changes modes, functions for the new mode are loaded into
RAM over the functions for the old mode. This dynamic
allocation provides an even more efficient utilization of
valuable RAM space.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not by way of limitation, in the figures of the accom-
panying drawings in which like reference numerals refer to
similar elements and in which:

Prior Art FIG. 1 shows a typical prior art embedded
system.

Prior Art FIG. 2 shows a memory diagram of the software
contents of a ROM and a RAM of the embedded computer
system of Prior Art FIG. 1.

FIG. 3 shows an embedded system of a digital camera in
accordance with one embodiment of the present invention.

FIG. 4 shows a memory diagram depicting the contents of
a ROM and a RAM of the embedded system of FIG. 3.

FIG. 5 shows a more detailed diagram of the contents of
the ROM and the RAM in accordance with one embodiment
of the present invention.

FIG. 6 shows a diagram of a function pointer table of the
present invention in detail.

FIG. 7A shows a memory diagram of the contents of a
ROM in accordance with an alternative embodiment of the
present invention.

FIG. 7B shows a first memory diagram of the contents of
a RAM in accordance with an alternative embodiment of the
present invention.

FIG. 7C shows a second memory diagram of the contents
of a RAM in accordance with an alternative embodiment of
the present invention.

10

15

20

30

35

40

45

50

55

60

65

4

FIG. 8 shows a flow chart of the steps of a process in
accordance with one embodiment of the present invention.

FIG. 9 shows a flow chart of the steps of a process in
accordance an alternative embodiment of the present inven-
tion.

FIG. 10A shows a flow chart of the steps of a process in
accordance with the present invention, wherein a digital
camera switches from capture mode to review & play mode.

FIG. 10B shows a flow chart of the steps of a process in
accordance with one embodiment of the present invention,
wherein a digital camera switches from review & play mode
to capture mode.

DETAILED DESCRIPTION OF THE
INVENTION

In the following detailed description of the present
invention, numerous specific details are set forth in order to
enable one of ordinary skill in the art to make and use the
invention and is provided in the context of a patent appli-
cation and its requirements. Although the present invention
will be described in the context of a digital camera, various
modifications to the present embodiment will readily be
apparent to those skilled in the art and the generic principles
herein may be applied to other embodiments. That is, any
embedded computer system device, such as, for example, a
personal digital assistant (PDA) or an embedded digital
communications device, that uses both ROM and RAM,
could incorporate the features described below herein and
that device would be within the spirit and scope of the
present invention. Thus, the present invention is not
intended to be limited to the embodiment shown but is to be
accorded the widest scope consistent with the principles and
features described herein.

The present invention provides a method and system for
implementing complex functionality in a consumer electron-
ics device inexpensively. The present invention provides a
system which reduces the amount of expensive RAM
needed in the embedded system of a device. Additionally,
the system of the present invention maintains the speed and
responsiveness of the device while reducing the amount of
RAM used in the device. In comparison to prior art embed-
ded system devices, a device in accordance with the present
invention either uses less RAM and is thus less expensive,
or runs faster using the same amount of RAM.

Referring to FIG. 3, an embedded system 300 is shown.
Embedded system 300 includes a processor 305, a RAM
315, an I/O device 325, a ROM 310, an imaging device 320,
and a removable memory 330, each respectively coupled via
abus 335. In the present embodiment, embedded system 300
is included within a digital camera. However, it should be
appreciated that the method and system of the present
invention can alternatively be implemented in other types of
devices having embedded systems, including, for example,
portable consumer electronics products as well as custom
industrial systems.

The functionality and operating characteristics of embed-
ded system 300 are largely determined by processor 305 and
imaging device 320, as processor 305 executes software
stored in ROM 310 and RAM 315, and controls the opera-
tion of imaging device 320. In accordance with the present
invention, ROM 310 stores the operating system code, boot
code, and the like of system 300, and in the present embodi-
ment has a capacity of approximately 2 megabytes (MB).
RAM 315 provides working memory for use by processor
305, buffers for storing images captured by imaging device
320, and the like, and in the present embodiment has a

US 6,212,632 B1

5

capacity of approximately 4 MB. I/O device 325 provides
user input, typically via mechanisms such as a shutter button
or a program selection button, which allows new program
code to be loaded from an external computer, and the like.
Imaging device 320 captures optical images by converting
them into digital data. Removable memory 330 provides
storage for captured images and an alternate method of
introducing new code (such as, for example, program
extensions) to the system. Processing unit 305 controls and
coordinates the interaction of ROM 310, RAM 315, imaging
device 320, I/O device 325, and removable memory 330, by
executing the software code which is stored in ROM 310 and
RAM 315. In the present embodiment, processing unit 305
is a PowerPC family microprocessor.

Referring now to FIG. 4, a memory diagram depicting the
contents of ROM 310 and RAM 3135 is shown. As shown in
FIG. 4, ROM 310 stores software including boot code 401,
compressed high-use functions 402, and operating system
code 403. FIG. 4 also shows the software contents of RAM
315 during capture mode from a time shortly after initial
power up of system 300. RAM 315 includes a capture buffer
414, a display buffer 415, uncompressed high-use functions
416, and a working memory space 420.

In accordance with the present invention, the size of RAM
315 is minimized by running the majority of the software of
embedded system 300 (e.g., boot code 401 and operating
system code 403) from ROM 310. However, the overall
speed of system 300 is largely maintained by running the
most frequently-used software (e.g., high-use functions 416)
from RAM 315.

At system 300 power-up, boot code 401 is executed and
begins setting up the initial software environment of embed-
ded system 300. Boot code 401 initializes the initial software
environment of system 300 by setting up capture buffer 414,
display buffer 415, and working memory 420. Patch man-
ager 405 subsequently executes. Patch manager 405
includes decompression software which decompresses com-
pressed high-use functions 402 and, as described in greater
detail in the discussion of FIG. § below, loads the resulting
decompressed high-use functions 416 into RAM 315. This is
shown by arrow 410. Write address space (e.g., capture
buffer 414, display buffer 415, and working memory 420)
are then instantiated in RAM 315. Operating system code
403 and patch manager 405 are instantiated in ROM 310.
The rest of the operating system code (e.g., operating system
code 403) remains instantiated in ROM 310.

In so doing, the present invention advantageously utilizes
a common characteristic of computer software in that, in
most cases, a processor (e.g., processor 305) spends a
majority of its processing cycles executing code from a
subset of its total software. Processor 305, in implementing
the most common functionality of system 300, will spend an
inordinate amount of time executing code from certain
functional software routines. In the digital camera example,
the high-use functional software routines are typically iden-
tified in the development phase of system 300 through the
use of well known software statistical analysis tools. These
high-use functional software routines (hereinafter high-use
functions) are instantiated in RAM 315. The remaining
majority of the software code is instantiated in ROM 310.

Consequently, since RAM 315 is accessed at least three
times faster that ROM 310, system 300 runs much faster
than a prior art embedded system running the entirety of its
operating system code from ROM. The majority of RAM
315 is occupied by capture buffer 414, display buffer 415,
and working memory 420. By using a relatively small

10

15

20

25

30

35

45

50

55

60

65

6

portion of RAM 315 to run the uncompressed high-use
functions 416, the speed of computer system 300 is greatly
increased. The operation of patch manager 405 ensures
high-use functions 416 work seamlessly with operating
system 403. The operation of patch manager 405 is dis-
cussed in greater detail below.

With reference now to FIG. 5, a more detailed diagram of
the contents of ROM 310 and RAM 315 is shown. As shown
in FIG. 310, ROM 310 includes operating system code 403,
which in turn includes patch manager 405 and a plurality of
functions, function 1 through function W. RAM 315
includes high-use functions 416, which in turn includes
functions X through Z. RAM 315 also includes working
memory 320, which in turn includes function pointer table
510 and other data structures used by operating system code
403 such as working global data 526.

As described above, the operation of patch manager 405
ensures high-use functions 416 work seamlessly with oper-
ating system 403. In the present embodiment, patch manager
405 copies a ROM version of function pointer table 510
from ROM 310 to RAM 315, as shown by line 550. It should
be noted that, the function calls are implemented via address
offsets from the function pointers of function pointer table
510. Function pointer table 510 includes a plurality of
entries, or function pointers, which, when called by process-
ing unit 305, redirect program execution to the memory
address of a selected routine. The function pointers of
function pointer table allow instantiated functions, whether
executing from ROM 310 or RAM 315, to call one another.
Initially, the function pointers are initialized to addresses in
ROM 310, but after copying to RAM 315, the high-use
function pointers are updated to addresses in RAM 315.
Patch manager 405 then loads the decompressed high-use
functions 416 into RAM 315 and updates function pointer
table 510 with entries for high-use functions 416.

Once function pointer table 510 has been updated, the
functions of operating system code 403 and the high-use
functions can operate together as a fully-functional, software
control program for embedded system 300. For example, in
a case where function 1 needs to call function V, function 1
would access the function V function pointer within function
pointer table 510, as indicated by arrow 535. The function V
function pointer directs execution to the ROM address of
function V, as indicated by arrow 540. On the other hand, in
a case where function 1 needs to call function Z, a high-use
function, the updated function Z function pointer would
direct execution to that address, as indicated by arrow 545.
Upon completion of the execution of function Z, execution
is returned to the calling function, as indicated by arrow 450.
It should be noted that function Z can alternatively call other
functions via the function pointer table prior to returning
control to its caller.

It should be noted that in addition to the capability of
instantiating and linking high-use functions 416, patch man-
ager 405 has the capability to instantiate and link other types
of functions. Such functions include for example, those
which extend the functionality of operating system code
403, those which replace or modify faulty or malfunctioning
functions, and the like. Similarly, in addition to extending or
modifying functions of operating system code 403, patch
manager 405 can extend the functionality of any software
application which executes on embedded system 300. The
only limitation is that patch manager 417 cannot patch code
which is executed prior to patch manager 417 in the start-up
sequence, such as, for example boot code 401. For additional
details and description of patch manager 405, readers are
directed to co-pending U.S. Pat. No. 5,938,766. entitled

US 6,212,632 B1

7
“SYSTEM AND METHOD FOR EXTENDING FUNC-
TIONALITY OF A DIGITAL ELECTRONIC SYSTEM,”
filed Mar. 21, 1999, which is incorporated herein by refer-
ence.

FIG. 6 shows a diagram of a function pointer table 510 in
greater detail. As described above, function pointer table 510
includes a plurality of function pointers 600, each of which
correspond to an instantiated function (e.g., function 1 of
FIG. 5). Each function pointer includes a function identifier
and that function’s corresponding starting address. For
example, function pointer 601 is the entry for function 1, and
thus includes an identifier for function one (shown on the left
side) and an address for function 1 (shown on the right side).

One alternate embodiment of function pointer table 510
would be to include only the address of the instantiated
functions in the function pointer table and access them by
indirection, wherein respective base addresses of the func-
tions are stored in the table at the corresponding function
number offset into the function pointer table. The function
number operates as the offset into the function pointer table
for a given function’s address. The advantage of this
embodiment is that the table size is reduced.

With reference now to FIGS. 7A, 7B, and 7C, memory
diagrams showing the operation of a memory management
system in accordance with a dynamic allocation embodi-
ment of the present invention is shown.

In accordance with the dynamic allocation embodiment,
rather than decompressing high-use functions from ROM
310 and instantiating them in RAM 315 at power up time,
functions are decompressed and instantiated dynamically, as
they are called by the operating system code or by the digital
camera’s user. In this embodiment, functions are delineated
by their primary use as opposed to their relative amount of
processor time. As the functional capability of one subset of
software code is needed, that subset is decompressed out of
ROM and instantiated in RAM. Subsequently, when the
functionality of a different subset of software code is needed,
the different subset is decompressed out of ROM and
instantiated in RAM, overwriting the previous subset. In this
manner, the valuable RAM address space is dynamically
allocated to an immediately or imminently executing
function, thereby maximizing the speed benefits of the
limited RAM space, and minimizing the amount of expen-
sive RAM required.

For example, FIGS. 7A and 7B show the contents of ROM
310 (e.g., 4 MB) and RAM 315 (e.g., 4 MB) in accordance
with the dynamic allocation embodiment of the present
invention. In this embodiment, ROM 310 includes boot code
710, base 711, compressed capture code 720, compressed
review & play code 730, and resources 740. At power up
time, boot code 710 executes and sets up the initial software
operating environment of embedded system 300. Boot code
710 instantiates decompressed capture code 754, memory
configuration manager 755, and base 756 within RAM 315.
After boot and system instantiation is complete, application
code uses an available block of memory within RAM 315 to
use as a display buffer 751, working memory 752, and a
capture buffer 753.

After initial power up, RAM 315 reflects a “capture
mode” of the digital camera wherein the camera is imme-
diately ready to capture images. In capture mode, a large
amount of RAM is needed for the captured images. Thus,
capture buffer 753 for storing captured images and display
buffer 715 for the generating the camera’s user display are
instantiated in RAM 315. Resources 740, which includes
fonts, symbols, sounds, icons, and the like, remains instan-
tiated in ROM 310.

10

15

20

25

30

35

40

45

50

55

60

65

8

Memory configuration manager 755, in a manner similar
to patch manager 405, is responsible for dynamically
decompressing and instantiating functions as needed. Func-
tion pointer table 510 (shown in FIG. 6) is located within
working memory 752. Memory configuration manager
updates function pointer table 510 to include entries for the
functions of capture code 754.

FIG. 7C shows the contents of RAM 315 after the digital
camera switches from capture mode to review & play mode.
The review & play code allows the user to review or play
back previously captured images. Once images are captured
and processed (e.g., compressed and stored on removable
memory 330) the large capture buffer is no longer needed.
Thus, memory configuration manager dynamically decom-
presses the compressed review & play code 730 and instan-
tiates it within the address space of RAM 315 previously
occupied by capture buffer 753. Memory manager uses a
remaining amount of RAM address space to instantiate a
second display buffer 760. This is shown by bracket 781 and
bracket 782. The two display buffers 751 and 761 allow the
updating and drawing of the user display, which is more
important in the review & play mode than in the capture
mode. Memory configuration manager then dynamically
updates function pointer table 510 with entries reflecting
review & play code 751.

Prior to decompressing review & play code 751, function
table entries for the functions of review & play code 751
contain a pointer to the address of a “not available” error
function. This function should never be called but is pro-
vided to assist in debugging. These entries are updated to
real function addresses when decompression is completed.
Accordingly, switching back from review & play mode to
capture mode entails the replacement of the review & play
code function pointer table entries with entries for the “not
available” error function.

Thus, in accordance with the dynamic allocation embodi-
ment of the present invention, software for system 300 is
executed from ROM 310 and from RAM 315 as memory
configuration manager 755 dynamically decompresses func-
tions from ROM 310, instantiates them as needed in RAM
315, and dynamically updates the function pointers of func-
tion pointer table 510.

Referring now to FIG. 8, a flow chart of the steps of a
process 800 in accordance with one embodiment of the
present invention is shown. Process 800 shows the embodi-
ment of the present invention in which a patch manager
(e.g., patch manager 405 of FIG. 5) instantiates high-use
functions after power up.

Process 800 begins in step 801 where a digital camera and
its embedded system (e.g., system 300 from FIG. 3) is
powered up, or switched on. At power up, in step 802, the
processor of the embedded system (e.g., processor 305)
begins executing boot code 401 stored in ROM 310. In step
803, boot code 401 sets up a function pointer table in RAM
315. In step 804, execution is then turned over to patch
manager 405, which executes from address space in ROM
310. In step 805, patch manager 405 decompresses a set of
high-use functions 402 and instantiates them in RAM 318.
Then, in step 806, patch manager 405 updates the function
pointer table 510 to include entries for high-use functions
402, and links the high-use functions 402 with the other
functions instantiated in RAM 315 and ROM 310. In step
807, the initial software environment for embedded system
300 is set up by an application. For example, a first executed
application (e.g., the default application code which
executes after power-up) uses a block of available memory

US 6,212,632 B1

9

of RAM 315 for capture buffers, display buffers, working
memory, and other software data structures which need to be
instantiated in the writeable address space of RAM 314.
Thus, in step 808, the high-use functions executing from
RAM 315 , functions of the operating system code 403
executing from ROM 310, and any other instantiated func-
tions operate as an integrated software control program for
the digital camera. In this embodiment, high-use functions
are instantiated in RAM 315 after boot time using the
capabilities of the patch manager 405.

With reference now to FIG. 9, a flow chart of the steps of
a process 900 in accordance with a dynamic allocation
embodiment of the present invention is shown. Process 900
shows the steps of the dynamic allocation embodiment of
the present invention in which a memory configuration
manager (e.g., memory configuration manager 755 of FIG.
7B) decompresses, instantiates, and links functions dynami-
cally during run time on an as-needed basis. As described
above, in this embodiment, software is dynamically linked
and de-linked as needed according to the requirements of the
presently selected operating mode.

Process 900 begins in step 901 where a digital camera and
its embedded computer system (e.g., computer system 300)
is powered-up. In step 902, the processor of the embedded
system (e.g., processor 305) executes boot code 710 stored
in ROM 310. In steps 903 and 904, as described above, boot
code 710 initializes the function pointer table 510 and sets
up the initial software environment for embedded system
300. In step 905, the memory configuration manager 755 is
decompressed out of ROM 310, instantiated, and linked. In
step 906 the software for base 756 is instantiated within
RAM 315 and linked. Thus, in step 907, the instantiated
functions executing from ROM 310 and RAM 315 operate
as an integrated software control program for the digital
camera.

Referring still to FIG. 9, in step 908, process 900 contin-
ues normal operation until there is a change in the operating
mode of the digital camera. It should be noted that this
change can originate from a number of sources, such as, for
example, the user selecting another mode via the digital
camera’s user interface, the camera entering a power saving
mode due to inactivity, archive space in removable memory
330 being full, etc. As described above, if there is a change
in operating mode, processing for the previous mode is
completed in step 909 and memory configuration manager
755 dynamically decompresses the required functions from
ROM 310 and instantiates them in RAM 315 in step 910.
Depending upon the particular characteristics of the newly
selected mode (e.g., the amount of software code comprising
the mode, resource requirements of the mode, etc.), the
functions for the newly selected mode are instantiated in
available space within RAM 315 (e.g., address space pre-
viously used for buffers which are no longer needed). If
more space is required, the software for the newly selected
mode is instantiated over (e.g., written over) the software for
the previous, no longer needed, mode. Then, in step 911,
memory configuration manager 755 dynamically updates
the function pointer table and links the required functions,
enabling the new mode. If software for the new mode
overwrites software for the previous mode, Memory con-
figuration manager updates the function pointer table to
de-link those functions which have been replaced (e.g.,
written over).

As described above, it should be noted that memory
configuration manager 755 also updates the function pointer
table with respective error pointer entries for those functions
which, as a result of the mode change, are no longer

10

15

20

25

30

35

40

45

50

55

60

65

10

instantiated. The digital camera then continues operation as
an integrated software control program, in step 907, until a
subsequent mode change occurs. Hence, in the dynamic
allocation embodiment, required functions are dynamically
decompressed, instantiated, linked, and de-linked by a
memory configuration manager on an as-needed basis.

In FIGS. 10A and 10B, flow charts of the steps of a
process 1000 and a process 1050 are respectively shown.
Processes 1000 and 1050 are examples of the processes used
by a digital camera to switch between two commonly used
modes, in this case, capture mode and review & play mode.
Where as process 900 of FIG. 9 shows the general steps used
to switch from any one mode to another, process 1000 shows
the particular steps involved in switching from capture mode
to review & play, and process 1150 shows the particular
steps involved in switching back to capture mode from
review & play mode. Process 1000 and process 1050 both
assume the general steps 901-907 have already been
executed. Additionally, process 1000 assumes no de-linking
of functions are required when instantiating review and play
code 751.

Referring now to FIG. 10A, process 1000 begins with step
1001 where the embedded computer system receives an
external signal to change from capture mode to review &
play mode. In step 1002, any processing for capture mode is
completed. Such processing could include, for example, the
processing of a recently captured image stored in capture
buffer 753. In step 1003, once processing for capture mode
is complete, memory configuration manager 755 decom-
presses the review & play mode software out of ROM 310
and instantiates it in RAM 315. In this embodiment, review
& play code 751 is loaded into the space previously used for
capture buffer 753, allowing capture code 754 to remain
instantiated even though its functions are not used in review
& play mode. In step 1004 the function pointer table 510 is
updated to link the review & play code 751, and in step
1005, review & play code 751 is executed on the digital
camera.

FIG. 10B shows process 1050, where the digital camera
switches from review & play mode back to capture mode. In
step 1051, as described above, the embedded computer
system receives an external signal to change from capture
mode to review & play mode. In step 1052, any processing
for review & play mode is completed, and in step 1053,
memory configuration manager 755 updates function
pointer table 510 is updated to de-link the review & play
code 751. In step 1054, the capture code 754 is executed.
Thus, in step 1055, the space in RAM 315 previously
occupied by review & play code 751 is used as capture
buffer 753.

Thus, the present invention provides a method and system
for implementing complex functionality in a consumer elec-
tronics device inexpensively. The present invention provides
a system which reduces the amount of expensive RAM
needed in the embedded system of a device. Additionally,
the system of the present invention maintains the speed and
responsiveness of the device while reducing the amount of
RAM used in the device. In comparison to prior art embed-
ded system devices, a device in accordance with the present
invention either uses less RAM and is, thus, less expensive,
or runs faster using the same amount of RAM.

The foregoing descriptions of specific embodiments of the
present invention have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms
disclosed, and obviously many modifications and variations

US 6,212,632 B1

11

are possible in light of the above teaching. The embodiments
were chosen and described in order best to explain the
principles of the invention and its practical application,
thereby to enable others skilled in the art best to utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
Claims appended hereto and their equivalents.

What is claimed is:

1. In an embedded computer system including a processor
coupled to a volatile memory and a non-volatile memory, a
method for efficiently managing the contents of the volatile
memory and the non-volatile memory to reduce the amount
of non-volatile memory required, the volatile and non-
volatile memories for containing computer readable soft-
ware which when executed by the computer system cause
the computer system to implement the method, the method
comprising the steps of:

a) executing boot code at power-up of the embedded
computer system, the boot code stored in the non-
volatile memory;

b) instantiating a function pointer table in the volatile
memory, wherein the function pointer table includes a
plurality of entries for a corresponding plurality of
instantiated functions, wherein at least one entry is for
operating system code stored in the non-volatile
memory;

¢) decompressing a high-use function stored in the non-
volatile memory;

d) instantiating the high-use function in the volatile
memory;

¢) updating the function pointer table using a patch
manager to incorporate an entry for the high-use func-
tion;

f) executing the operating system code from the non-
volatile memory; and

g) executing the high-use function from the volatile
memory, thereby reducing an amount of non-volatile
memory required by the embedded computer system
while maintaining operating speed of the embedded
computer system.

2. The method of claim 1, wherein the non-volatile
memory has a slower access time than the volatile memory,
and wherein the non-volatile memory is ROM (read only
memory) and the volatile memory is RAM (random access
memory).

3. The method of claim 1, wherein the function pointer
table is operable to enable any one of the plurality of
instantiated functions to call another one of the plurality of
functions.

4. The method of claim 1, wherein the patch manager
includes software code operable to update the function
pointer table to incorporate extension functions which
extend the functionality of the operating system code.

5. The method of claim 1, wherein the embedded com-
puter system is built into a hand-held digital camera.

6. The method of claim 1, wherein the processor of the
embedded computer system expends a disproportionately
large amount of execution time processing the high-use
function in comparison to an amount of execution time the
embedded computer system expends processing the plural-
ity of instantiated functions.

7. A system for efficiently managing the contents of a
volatile memory and a non-volatile memory to reduce the
amount of non-volatile memory required in an embedded
computer system, comprising

10

15

20

30

35

40

45

50

55

60

65

12

an embedded computer system including a processor
coupled to a volatile memory and a non-volatile
memory, the volatile and non-volatile memories for
containing computer readable software which when
executed by the computer system cause the computer
system to implement a method for efficiently managing
the contents of the volatile memory and the non-
volatile memory, the method comprising the steps of:
a) executing boot code at power-up of the embedded
computer system, the boot code stored in the non-
volatile memory;

b) instantiating a function pointer table in the volatile
memory, wherein the function pointer table includes
a plurality of entries for a corresponding plurality of
instantiated functions, wherein at least one entry is
for operating system code stored in the non-volatile
memory;

¢) decompressing a high-use function stored in the
non-volatile memory;

d) instantiating the high-use function in the volatile
memory;

¢) updating the function pointer table using a patch
manager to incorporate an entry for the high-use
function;

f) executing the operating system code from the non-
volatile memory; and

2) executing the high-use function from the volatile
memory, wherein the processor of the embedded
computer system expends a disproportionately large
amount of execution time processing the high-use
function in comparison to an amount of execution
time the embedded computer system expends pro-
cessing the plurality of instantiated functions,
thereby reducing an amount of non-volatile memory
required by the embedded computer system while
maintaining operating speed of the embedded com-
puter system.

8. The system of claim 7, wherein the embedded computer
system is built into a hand-held digital camera.

9. The system of claim 7, wherein the non-volatile
memory has a slower access time than the volatile memory,
and wherein the non-volatile memory is ROM (read only
memory) and the volatile memory is RAM (random access
memory).

10. The system of claim 7, wherein the function pointer
table is operable to enable any one of the plurality of
instantiated functions to call another one of the plurality of
functions.

11. The system of claim 7, wherein the patch manager
includes software code operable to update the function
pointer table to incorporate extension functions which
extend the functionality of the operating system code.

12. In an embedded computer system including a proces-
sor coupled to a volatile memory and a non-volatile memory,
a method for dynamic memory allocation to manage the
contents of the volatile memory and the non-volatile
memory to reduce the amount of non-volatile memory
required by the embedded computer system, the volatile and
non-volatile memories for containing computer readable
software which when executed by the computer system
cause the computer system to implement the method, the
method comprising the steps of:

a) executing boot code at power-up of the embedded
computer system, the boot code stored in the non-
volatile memory;

b) instantiating a function pointer table in the volatile
memory, wherein the function pointer table includes a

US 6,212,632 B1

13

plurality of entries for a corresponding plurality of
instantiated functions, wherein at least one entry is for
operating system code stored in the non-volatile
memory;

¢) decompressing a first mode function stored in the

non-volatile memory;

d) instantiating the first mode function in the volatile

memory;

¢) incorporating an entry for the first mode function in the

function pointer table;

f) executing the operating system code from the volatile

memory; and

g) executing the first mode function from the volatile

memory; and

h) in response to a change in the required capability of the

embedded computer system:

i) decompressing a second mode function stored in the
non-volatile memory;

j) instantiating the second mode function in the volatile
memory; and

k) dynamically incorporating an entry for the second
mode function in the function pointer table, thereby
reducing an amount of non-volatile memory required
by the embedded computer system while maintain-
ing operating speed of the embedded computer sys-
tem by dynamically allocating address space of the
volatile memory.

13. The method of claim 12, wherein the non-volatile
memory has a slower access time than the volatile memory,
and wherein the non-volatile memory is ROM (read only
memory) and the volatile memory is RAM (random access
memory).

14. The method of claim 12, wherein the change in the
required capability of the embedded computer system results
from a change an operating mode of the computer system
from a first mode to a second mode in response to an external
input.

15. The method of claim 12 wherein step k) is performed
using a memory configuration manager adapted to dynami-
cally update the function pointer table with entries for newly
instantiated functions.

16. The method of claim 12, wherein the embedded
computer system is built into a hand-held digital camera.

17. A dynamic memory allocation system for efficiently
managing the contents of a volatile memory and a non-
volatile memory to reduce the amount of non-volatile
memory required in an embedded computer system, com-
prising:

an embedded computer system including a processor

coupled to a volatile memory and a non-volatile
memory, the volatile and non-volatile memories for
containing computer readable software which when
executed by the computer system cause the computer
system to implement a method for efficiently managing
the contents of the volatile memory and the non-
volatile memory, the method comprising the steps of:
a) executing boot code at power-up of the embedded
computer system, the boot code stored in the non-
volatile memory;
b) instantiating a function pointer table in the volatile
memory, wherein the function pointer table includes
a plurality of entries for a corresponding plurality of
instantiated functions, wherein at least one entry is
for operating system code stored in the non-volatile
memory;
¢) decompressing a first mode function stored in the
non-volatile memory;

15

20

25

30

35

40

45

50

55

60

65

14

d) instantiating the first mode function in the volatile
memory;

¢) incorporating an entry for the first mode function in
the function pointer table;

f) executing the operating system code from the volatile
memory; and

2) executing the first mode function from the volatile
memory; and

h) in response to a change in the required capability of
the embedded computer system:

i) decompressing a second mode function stored in
the non-volatile memory using a memory configu-
ration manager;

j) instantiating the second mode function in the
volatile memory; and

k) dynamically incorporating an entry for the second
mode function in the function pointer table using
the memory configuration manager, thereby
reducing an amount of non-volatile memory
required by the embedded computer system while
maintaining operating speed of the embedded
computer system by dynamically allocating
address space of the volatile memory.

18. The method of claim 17, wherein the non-volatile
memory has a slower access time than the volatile memory,
and wherein the non-volatile memory is ROM (read only
memory) and the volatile memory is RAM (random access
memory).

19. The method of claim 17, wherein the change in the
required capability of the embedded computer system results
from a change an operating mode of the computer system
from a first mode to a second mode in response to an external
input.

20. The method of claim 17 wherein step k) is performed
using a memory configuration manager adapted to dynami-
cally update the function pointer table with entries for newly
instantiated functions.

21. The method of claim 17, wherein the embedded
computer system is built into a hand-held digital camera.

22. The method of claim 17, wherein the embedded
computer system is built into a personal digital assistant
device.

23. The method of claim 17, wherein the embedded
computer system is built into a embedded communications
device.

24. A dynamic memory allocation system for efficiently
managing the contents of a volatile memory and a non-
volatile memory to reduce the amount of non-volatile
memory required in an embedded computer system, com-
prising:

an embedded computer system including a processor

coupled to a volatile memory and a non-volatile
memory, the volatile and non-volatile memories for
containing computer readable software which when
executed by the computer system cause the computer
system to implement a method for efficiently managing
the contents of the volatile memory and the non-
volatile memory, the method comprising the steps of:
a) executing boot code at power-up of the embedded
computer system, the boot code stored in the non-
volatile memory;
b) instantiating a function pointer table in the volatile
memory, wherein the function pointer table includes

a plurality of entries for a corresponding plurality of

instantiated functions, wherein at least one entry is

for operating system code stored in the non-volatile
memory;

US 6,212,632 B1

15

¢) decompressing a first mode function stored in the
non-volatile memory;

d) instantiating the first mode function in the volatile
memory;

e) incorporating an entry for the first mode function in
the function pointer table;

f) executing the operating system code from the volatile
memory; and

g) executing the first mode function from the volatile
memory; and

h) in response to a change in the required capability of
the embedded computer system;

i) decompressing a second mode function stored in
the non-volatile memory using a memory configu-
ration manager;

j) instantiating the second mode function in the
volatile memory using the memory configuration
manager;

k) dynamically updating the function pointer table to
de-link the first mode function; and

k) dynamically incorporating an entry for the second
mode function in the function pointer table using

10

15

20

16

the memory configuration manager, thereby
reducing an amount of non-volatile memory
required by the embedded computer system while
maintaining operating speed of the embedded
computer system by dynamically allocating
address space of the volatile memory.

25. The method of claim 24, wherein the non-volatile
memory has a slower access time than the volatile memory,
and wherein the non-volatile memory is ROM (read only
memory) and the volatile memory is RAM (random access
memory).

26. The method of claim 24, wherein the change in the
required capability of the embedded computer system results
from a change an operating mode of the computer system
from a first mode to a second mode in response to an external
input.

27. The method of claim 24 wherein the memory con-
figuration manager is adapted to dynamically update the
function pointer table to link newly instantiated functions
and de-link previously instantiated functions.

#* * * * *

